精英家教网 > 初中数学 > 题目详情
已知二次函数y=
12
x2+bx+c的图象经过点A(-3,6),并且与x轴交于点B(-1,0)和点C,顶点为P.
(1)求这个二次函数解析式;
(2)设D为线段OC上的点,满足∠DPC=∠BAC,求点D的坐标.
分析:(1)将A、B的坐标代入抛物线中,即可求出二次函数的解析式.
(2)先求得P、C两点坐标,然后通过证△BAC和△PCD来求出CD的长,即可得出D点的坐标.
解答:解:(1)已知抛物线过A(-3,6),B(-1,0)则有:
9
2
-3b+c=6
1
2
-b+c=0

解得
b=-1
c=-
3
2

∴二次函数的解析式为:y=
1
2
x2-x-
3
2


(2)易知:P(1,-2),C(3,0),
过P作PM⊥x轴于M,
则PM=2,
∵抛物线过C(3,0)和B(-1,0),
∴BC=4,CM=2=PM,
∴∠PCO=45°精英家教网
同理可求得∠ACB=45°,
∵∠DPC=∠BAC,∠PCO=∠ACB=45°,精英家教网
∴△DPC∽△BAC,
DC
BC
=
PC
AC

易求AC=6
2
,PC=2
2
,BC=4
∴CD=
4
3
,OD=3-
4
3
=
5
3

∴D(
5
3
,0).
点评:本题考查了二次函数解析式的确定、相似三角形的判定和性质等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和(-3,-12).
(1)求此二次函数的表达式;
(2)若直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由;
(3)若点P是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较精英家教网锐角∠PCO与∠ACO的大小(不必证明),并写出此时点P的横坐标xp的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+px+q(p,q为常数,△=p2-4q>0)的图象与x轴相交于A(x1,0),B(x2,0)两点,且A,B两点间的距离为d,例如,通过研究其中一个函数y=x2-5x+6及图象(如图),可得出表中第2行的相关数据.
(1)在表内的空格中填上正确的数;
(2)根据上述表内d与△的值,猜想它们之间有什么关系?再举一个符合条件的二次函数,验证你的猜想;
(3)对于函数y=x2+px+q(p,q为常数,△=p2-4q>0)证明你的猜想.聪明的小伙伴:你能再给出一精英家教网种不同于(3)的正确证明吗?我们将对你的出色表现另外奖励3分.
y=x2+px+q  x1 x2 
y=x2-5x+6  -5  6  1  1
y=x2-
1
2
-
1
2
 
   
1
4
   
1
2
 
y=x2+x-2    -2   -2    3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-
1
2
(x-
3
2
)2+
25
8
的图象在坐标原点为O的直角坐标系中,
(1)设这个二次函数的图象与x轴的交点是A、B(B在点A右边),与y轴的交点是C,求A、B、C的坐标;
(2)求证:△OAC∽△OCB.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=-
12
.下列结论中:
①abc>0;②a+b=0;③2b+c>0;④4a+c<2b.
正确的有
(只要求填写正确命题的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2的图象经过点A(
1
2
1
8
)、B(3,m).
(1)求a与m的值;    
(2)当-2<x<4时,函数值y的取值范围.
(3)写出将其图象向下平移4个单位、再向左平移2个单位后的解析式.

查看答案和解析>>

同步练习册答案