精英家教网 > 初中数学 > 题目详情

已知在△ABC中,∠C=90°,BC=8,AB=10,点G为重心,那么tan∠GCB的值为________.


分析:作出草图,连接CG并延长交AB于点D,根据重心定义可知点CD是△ABC的中线,求出CD,BD的长度,再过点D作DE⊥BC于点E,根据等腰三角形三线合一的性质求出CE的长度,再利用勾股定理求出DE的长度,然后根据锐角三角函数的定义进行解答即可.
解答:解:如图,连接CG并延长交AB于点D,
∵点G为重心,
∴CD是△ABC的中线,
∴CD=BD=AB=×10=5,
过点D作DE⊥BC于点E,
则CE=BE=BC=×8=4,
在Rt△CDE中,DE===3,
∴tan∠GCB==
故答案为:
点评:本题考查了三角形的重心,锐角三角函数的定义,明确三角形的重心是三边中线的交点,并作出辅助线构造出直角三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在△ABC中,AB=AC=5,BC=8,点G为重心,那么GA=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,已知在△ABC中,∠A=(2x+10)°,∠B=(3x)°,∠ACD是△ABC的一个外角,且∠ACD=(6x-10)°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,∠BAC=90°,AC=4,BC=4
5
,若点D、E、F分别为AB、BC、AC边的中点,点P为AB边上的一个动点(且不与点A、B重合),PQ∥AC,且交BC于点Q,以PQ为一边在点B的异侧作正方形PQMN,设正方形PQMN与矩形ADEF的公共部分的面积为S,BP的长为x,试求S与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E.若BD平分∠ABC.
求证:CE=
12
BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.
(1)当∠A=70°时,求∠BPC的度数;
(2)当∠A=112°时,求∠BPC的度数;
(3)当∠A=α时,求∠BPC的度数.

查看答案和解析>>

同步练习册答案