精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABC中,∠B=90°,AB=2BC,点D、E分别为AB、AC的中点,连接DE,将△ADE绕点E旋转180°得到△CFE.试判断四边形BCFD的形状,并证明.

解:四边形BCFD是正方形,理由如下:
∵点D、点E分别是AB、AC的中点,
∴AB=2BC,BD=BC,
∴DE是中位线,
∴DE∥BC,
∴∠ADE=∠B=90°.
又∵△CFE是由△ADE旋转而得,
∴∠F=∠BDF=∠B=90°,
∴四边形BCFD是矩形,
又∵BD=BC,
∴四边形BCFD是正方形.
分析:先由中位线的性质得出DE∥BC,则∠ADE=∠B=90°,再根据旋转的性质得出∠F=∠BDF=∠B=90°,则四边形BCFD是矩形,又BD=BC,根据有一组邻边相等的矩形是正方形即可得出四边形BCFD是正方形.
点评:本题考查了三角形中位线定理,旋转的性质,正方形的判定,难度适中.正方形的判定方法有:
①先判定四边形是矩形,再判定这个矩形有一组邻边相等;
②先判定四边形是菱形,再判定这个矩形有一个角为直角.
③还可以先判定四边形是平行四边形,再用1或2进行判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案