精英家教网 > 初中数学 > 题目详情

已知:如图,∠BAG+∠AGD=,∠1=∠2.求证:AE∥FG.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知四边形ABCD、AEFG均为正方形,∠BAG=α(0°<α<180°).
(1)求证:BE=DG,且BE⊥DG;
(2)设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB所围成封闭图形的面积为S.当α变化时,指出S的最大值及相应的α值.(直接写出结果,不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•历下区一模)已知:如图1,在DE上取一点A,以AD、AE为正方形的一边在同一侧作正方形ABCD和正方形AEFG,连接DG、BE,则线段DG、BE之间满足DG=BE且DG⊥BE;

根据所给图形完成以下问题的探索、证明和计算:
(1)如图2,将正方形AEFG绕A点顺时针旋转α度,即∠BAG=α (0°<α<180°),那么(1)中的结论是否仍成立?若不成立请说明理由,若成立请给出证明.
(2)设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB所围成封闭图形的面积为S.当α变化时,S是否有最大值?若有,求出S的最大值及相应的α值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闵行区二模)如图,在△ABC中,AB=AC,点D在边AB上,以点A为圆心,线段AD的长为半径的⊙A与边AC相交于点E,AF⊥DE,垂足为点F,AF的延长线与边BC相交于点G,联结GE.已知DE=10,cos∠BAG=
12
13
AD
DB
=
1
2
.求:
(1)⊙A的半径AD的长;
(2)∠EGC的余切值.

查看答案和解析>>

科目:初中数学 来源:2012年山东省济南市历下区中考数学一模试卷(解析版) 题型:解答题

已知:如图1,在DE上取一点A,以AD、AE为正方形的一边在同一侧作正方形ABCD和正方形AEFG,连接DG、BE,则线段DG、BE之间满足DG=BE且DG⊥BE;

根据所给图形完成以下问题的探索、证明和计算:
(1)如图2,将正方形AEFG绕A点顺时针旋转α度,即∠BAG=α (0°<α<180°),那么(1)中的结论是否仍成立?若不成立请说明理由,若成立请给出证明.
(2)设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB所围成封闭图形的面积为S.当α变化时,S是否有最大值?若有,求出S的最大值及相应的α值.

查看答案和解析>>

同步练习册答案