精英家教网 > 初中数学 > 题目详情

作业宝如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.
(1)当AB≠AC时,证明:四边形ADFE为平行四边形;
(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.

(1)证明:∵△ABE、△BCF为等边三角形,
∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°.
∴∠CBA=∠FBE.
∴△ABC≌△EBF.
∴EF=AC.
又∵△ADC为等边三角形,
∴CD=AD=AC.
∴EF=AD.
同理可得AE=DF.
∴四边形AEFD是平行四边形.

(2)解:构成的图形有四类,一类是菱形,一类是线段,一类是正方形,一类是三角形.
当图形为菱形时,∠BAC≠60°(或A与F不重合、△ABC不为正三角形);
当图形为线段时,∠BAC=60°(或A与F重合、△ABC为正三角形);
当图形为正方形时,∠BAC=150°;
当图形为三角形时,E,F,D三点共线.
分析:(1)要证明ADEF是平行四边形,可通过证明EF=AD,DF=AE来实现,AD=AC,AE=AB,那么只要证明△ABC≌△DFC以及△FEB≌△CAB即可.AD=DC,CF=CB,又因为∠FCB=∠ACD=60°,那么都减去一个∠ACF后可得出∠BCA=∠FCD,那么就构成了SAS,△ABC≌△DFC,就能求出AE=DF,同理可通过证明△FEB≌△CAB得出EF=AD.
(2)可按∠BAC得度数的不同来分情况讨论,如果∠BAC=60°,∠EAD+∠BAC+∠DAC=180°,因此,A与F重合A、D、F、E四点所构成的图形为一条线段.当∠BAC≠60°时,由(1)AE=AB=AC=AD,因此A、D、F、E四点所构成的图形是菱形.
点评:本题的关键是通过三角形的全等来得出线段的相等,要先确定所要证得线段所在的三角形,然后看证明三角形全等的条件是否充足,缺少条件的要根据已知先求出了.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、如图,△ACD≌△ECB,A,C,B在一条直线上,且A和E是一对对应顶点,如果∠BCE=130°,那么将△ACD围绕C点顺时针旋转(  )与△ECB重合.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,∠ACD是△ABC的一个外角,请你从下面三个条件中,选出两个作为已知条件,另一个作为结论,推出一个正确的命题.
①CE∥AB,②∠A=∠B,②CE平分∠ACD
(1)上述问题有哪几种正确命题,请按“☆☆?☆”的形式一一书写出来;
(2)请根据(1)中正确命题,选择一种加以说明,并写出推理过程?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.
(1)如果∠A=60°,∠ABC=50°,求∠E的度数;
(2)猜想:∠E与∠A有什么数量关系;(写出结论即可)
(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•安宁市一模)如图,∠ACD是等腰△ABC的一个外角,已知AB=AC,∠A=50°,那么∠ACD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠ACD是△ABC的外角,∠A=50°,∠ACD=110°,
求:∠B和∠ACB.

查看答案和解析>>

同步练习册答案