解:①∵PA、PB是⊙O的切线,
∴PA=PB,

又∵直线EF是⊙O的切线,
∴EB=EQ,FQ=FA,
∴△PEF的周长=PE+PF+EF=PE+PF+EB+FA=PA+PB=2PA=24cm;
②连接OE,OF,则OE平分∠BEF,OF平分∠AFE,
则∠OEF+∠OFE=

(∠P+∠PFE)+

∠(P+∠PEF)=

(180°+40°)=110°,
∴∠EOF=180°-110°=70°.
分析:①根据切线长定理得出PA=PB,EB=EQ,FQ=FA,由PE+EF+PF=PE+EQ+FQ+PF即可求出答案.
②连接OE,OF,求出∠OEF+∠OFE的度数,即可得出∠EOF的度数.
点评:本题考查了切线长定理,从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.