½â£º£¨1£©¡ßy=-

x+3£¬
¡àx=0ʱ£¬y=3£¬¼´AµÄ×ø±êΪ£¨0£¬3£©£®
°ÑB£¨4£¬1£©ºÍA£¨0£¬3£©´úÈëy=-

x
2+bx+c£¬
µÃ

£¬½âµÃ

£¬

¡àÅ×ÎïÏߵĺ¯Êý½âÎöʽΪy=-

x
2+

x+3£»
£¨2£©¢ÙÈçͼ£¬ÉèÖ±ÏßAB£ºy=-

x+3ÓëxÖá½»ÓÚµãD£¬ÔòD£¨6£¬0£©£®
ÔÚ¡÷AOCÓë¡÷DOAÖУ¬

£¬
¡à¡÷AOC¡×¡÷DOA£¬
¡à

=

£¬¼´

=

£¬
½âµÃOC=

£¬
¡àµãCµÄ×ø±êΪ£¨-

£¬0 £©£»

¢ÚÔÚÅ×ÎïÏߵĶԳÆÖáÉÏ´æÔÚÒ»µãP£¬Äܹ»Ê¹µÃ¡÷PACµÄÖܳ¤×îС£®ÀíÓÉÈçÏ£º
¡ßy=-

x
2+

x+3=-

£¨x-

£©
2+

£¬
¡à¶Ô³ÆÖáΪֱÏßx=

£®
ÉèµãA£¨0£¬3£©¹ØÓÚÖ±Ïßx=

µÄ¶Ô³ÆµãΪA¡ä£¨3£¬3£©£¬Á¬½ÓA¡äC½»Ö±Ïßx=

ÓÚµãP£¬Á¬½ÓPA£¬ÔòPA=PA¡ä£¬
´ËʱPA+PC=PA¡ä+PC=A¡äC£¬Öµ×îС£¬¼´¡÷PAC µÄÖܳ¤µÄÖµ×îС£®
¡ßA¡ä£¨3£¬3£©£¬C£¨-

£¬0 £©£¬
¡àA¡äC=

=

£»
¡à´ËʱPA+PC=

£»

¢Û·ÖÁ½ÖÖÇé¿ö£º
£¨i£©ÒÔBΪֱ½Ç¶¥µãʱ£¬¹ýBµã×÷ABµÄ´¹ÏßÓëxÖá½»ÓÚµãQ
1£¬ÓëyÖá½»ÓÚµãQ
2£¬
Ò×ÇóÖ±ÏßBQ
1µÄ½âÎöʽΪy=2x-7£¬ËùÒÔQ
1£¨

£¬0£©£¬Q
2£¨0£¬-7£©£»
£¨ii£©ÒÔQΪֱ½Ç¶¥µãʱ£¬ÒÔABΪֱ¾¶×÷Ô²½»xÖáÓÚQ
3£¬Q
4£¬ÓëyÖá½»ÓÚµãQ
5£¬
ÒÔABΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£¨x-2£©
2+£¨y-2£©
2=5£¬
µ±y=0ʱ£¬x=1»ò3£¬ËùÒÔQ
3£¨1£¬0£©£¬Q
4£¨3£¬0£©£»
µ±x=0ʱ£¬y=1»ò3£¬ËùÒÔQ
5£¨0£¬1£©£®
×ÛÉÏ¿ÉÖª£¬ËùÇóµãQµÄ×ø±êΪ£ºQ
1£¨

£¬0£©£¬Q
2£¨0£¬-7£©£¬Q
3£¨1£¬0£©£¬Q
4£¨3£¬0£©£¬Q
5£¨0£¬1£©£®
·ÖÎö£º£¨1£©ÏÈÓÉy=-

x+3£¬¿ÉµÃÓëyÖáµÄ½»µãAµÄ×ø±ê£¬ÔÙ°ÑB£¨4£¬1£©ºÍA£¨0£¬3£©´úÈëy=-

x
2+bx+c£¬ÔËÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÅ×ÎïÏߵĺ¯Êý½âÎöʽ£»
£¨2£©¢ÙÉèÖ±ÏßABÓëxÖá½»ÓÚµãD£¬ÔòD£¨6£¬0£©£¬ÓÉ¡÷AOC¡×¡÷DOA¿ÉµÃ£¬OC=

£¬¼´µãCµÄ×ø±êΪ£¨-

£¬0£©£»
¢ÚÓÉÅ×ÎïÏߣºy=-

x
2+

x+3£¬¿ÉµÃÆä¶Ô³ÆÖáΪֱÏßx=

£¬ÉèµãA¹ØÓÚx=

µÄ¶Ô³ÆµãΪA¡ä£¨3£¬3£©£¬Á¬½ÓA¡äC½»Ö±Ïßx=

ÓÚµãP£¬¸ù¾ÝÖá¶Ô³ÆµÄÐÔÖʺÍÁ½µãÖ®¼äÏß¶Î×î¶Ì¿ÉÖª£¬´ËʱPA+PCµÄÖµ×îС£¬¼´¡÷PACµÄÖܳ¤µÄÖµ×îС£¬ÔËÓÃÁ½µã¼äµÄ¾àÀ빫ʽÇó³öA¡äCµÄ³¤¶È£¬¼´Îª´ËʱPA+PCµÄÖµ£»
¢ÛÓÉÓÚÒÔAΪֱ½Ç¶¥µãʱ£¬¹ýAµã×÷ABµÄ´¹ÏßÓë×ø±êÖá½»ÓÚC£¬ËùÒÔ¡÷QABΪֱ½ÇÈý½ÇÐÎʱ£¬·ÖÁ½ÖÖÇé¿öÌÖÂÛ£º£¨i£©ÒÔBΪֱ½Ç¶¥µã£»£¨ii£©ÒÔQΪֱ½Ç¶¥µã£®
µãÆÀ£º±¾ÌâÊǶþ´Îº¯ÊýµÄ×ÛºÏÌâÐÍ£¬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓÐÔËÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý¡¢¶þ´Îº¯ÊýµÄ½âÎöʽ£¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬Öá¶Ô³Æ-×î¶Ì·ÏßÎÊÌ⣬ֱ½ÇÈý½ÇÐεÄÅж¨£¬×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨ÄѶȣ®ÔËÓÃÊýÐνáºÏ¡¢·ÖÀàÌÖÂÛÊǽâÌâµÄ¹Ø¼ü£®