精英家教网 > 初中数学 > 题目详情
如图,直线AB过点A(m,0)、B(0,n)(其中m>0,n>0)。反比例函数(p>0)的图象与直线AB交于C、D两点,连结 OC、OD.
(1)已知m+n=10,△AOB的面积为S,问:当n何值时,S取最大值?并求这个最大值;
(2)若m=8,n=6,当△AOC、△COD、△DOB的面积都相等时,求p的值。
解:(1)根据题意,得:OA=m,OB=n,
所以S=mn, 
又由m+n=10,得 m=10-n,
得:S=n(10-n)=-n2+5n
=-(n-5)2+
∵ -
∴ 当n=5时,S取最大值. 
(2)设直线AB的解析式为
因为直线AB过点A(8,0),B(0,6)
所以
解得:
所以直线AB的函数关系式为
过点D、C分别作轴的垂线,垂足分别点E、F,
当△AOC、△COD、△DOB的面积都相等时,
有S△AOC=S△AOB ,即OA×CF=×OA×OB,
所以CF=2
即C点的纵坐标为2
将y=2代入,得
即点C的坐标为
因为点C在反比例函数图象上
所以
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线AB过点A(m,0)、B(0,n)(m>0,n>0),反比例函数y=
m
x
的图象与直线AB交于C、精英家教网D两点,P为双曲线y=
m
x
上任意一点,过P点作PQ⊥x轴于Q,PR⊥y轴于R.
(1)用含m、n的代数式表示△AOB的面积S;
(2)若m+n=10,n为何值时S最大并求出这个最大值;
(3)若BD=DC=CA,求出C、D两点的坐标;
(4)在(3)的条件,过O、D、C点作抛物线,当该抛物线的对称轴为x=1时,矩形PROQ的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•同安区质检)如图,直线AB过点A(m,0)、B(0,n)(其中m>0,n>0).反比例函数y=
mx
的图象与直线AB交于C、D两点,连接OC、OD.
(1)已知m+n=10,△AOB的面积为S,问:当n何值时,S取最大值?并求这个最大值.
(2)当△AOC、△COD、△DOB的面积都相等时,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•房山区二模)如图,直线AB过点A,且与y轴交于点B.
(1)求直线AB的解析式;
(2)若P是直线AB上一点,且⊙P的半径为1,请直接写出⊙P与坐标轴相切时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB过点A(4,0)、B(0,3).反比例函数y=
px
(p>0)的图象与直线AB交于C、D两点,连接OC、OD.
(1)求直线AB的解析式.
(2)若△AOC、△COD、△DOB的面积都相等,求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB过点O,OC、OD是直线AB同旁的两条射线,若∠BOD比∠COD的3倍大20°,∠AOD比∠BOD的2倍小15°,求∠COD的度数.

查看答案和解析>>

同步练习册答案