精英家教网 > 初中数学 > 题目详情
如果抛物线y=
1
2
x2-mx+5m2与x轴有交点,则m=______.
∵抛物线y=
1
2
x2-mx+5m2与x轴有交点,
∴b2-4ac=(-m)2-4×
1
2
×5m2=-9m2≥0.
∵m2为非负数,
∴-9m2一定为非正数.
∴只有m=0时抛物线y=
1
2
x2-mx+5m2与x轴才有交点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,A(3,a)是双曲线y=
12
x
上的点,O是原点,延长线段AO交双曲线于另一点B,又过B点作BK⊥x轴于K.
精英家教网
(1)试求a的值与点B坐标;
(2)在直角坐标系中,先使线段AB在x轴的正方向上平移6个单位,得线段A1B1,再依次在与y轴平行的方向上进行第二次平移,得线段A2B2,且可知两次平移中线段AB先后滑过的面积相等(即?AA1B1B与?A1A2B2B1的面积相等).求出满足条件的点A2的坐标,并说明△AA1A2与△OBK是否相似的理由;
(3)设线段AB中点为M,又如果使线段AB与双曲线一起移动,且AB在平移时,M点始终在抛物线y=
1
6
(x-6)2-6上,试判断线段AB在平移的过程中,动点A所在的函数图象的解析式;(无需过程,直接写出结果.)
(4)试探究:在(3)基础上,如果线段AB按如图2所示方向滑过的面积为24个平方单位,且M点始终在直线x=6的左侧,试求此时线段AB所在直线与x轴交点的坐标,以及M点的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知直线y=-
1
2
x与抛物线y=-
1
4
x2+6交于A,B两点.
(1)求A,B两点的坐标;
(2)求线段AB的垂直平分线的解析式;
(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点A(a,y1)、B(2a,y2)、C(3a,y3)都在抛物线y=5x2+12x上.
(1)求抛物线与x轴的交点坐标;
(2)当a=1时,求△ABC的面积;
(3)是否存在含有y1,y2,y3,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线l1:y=-x+3与直线l2:y=
12
x-3
的图象交于A点,l1与坐精英家教网标轴分别交于B,C两点,l2与坐标轴分别交于D,E两点.
(1)求点A的坐标,并求出经过A,C,D三点的抛物线函数解析式;
(2)题(1)抛物线上的点的横坐标不动,纵坐标扩大一倍后,得到新的抛物线,请写出这个新的抛物线的函数解析式,判断这个抛物线经过平移,轴对称这两种变换后能否经过A,B,E三点;如果可以,说出变换的过程;如果不可以,请说明理由.
(3)在题(1)中的抛物线顶点上方的对称轴上有一动点P,在对称轴右侧的抛物线上有一动点Q,问是否存在这样的动点P,Q,使△APQ与△ABD相似?如存在请求出动点Q的坐标,并直接写出AP的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄埔区一模)已知抛物线L:y=x2-(k-2)x+(k+1)2
(1)证明:不论k取何值,抛物线L的顶点C总在抛物线y=3x2+12x+9上;
(2)已知-4<k<0时,抛物线L和x轴有两个不同的交点A、B,求A、B间距取得最大值时k的值;
(3)在(2)A、B间距取得最大值条件下(点A在点B的右侧),直线y=ax+b是经过点A,且与抛物线L相交于点D的直线.问是否存在点D,使△ABD为等边三角形?如果存在,请写出此时直线AD的解析式;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案