精英家教网 > 初中数学 > 题目详情

如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交ED于点P.若AE=AP=1,PB=数学公式.则正方形ABCD的面积为________.

4+
分析:求出△AEB≌△APD,推出∠EBA=∠ADP,BE=DP,∠APD=∠AEB=135°,求出EP,过B作BF⊥AE交AE的延长线于F,连接BD,
求出BE=,由勾股定理求出BF=EF=,求出S△APB+SAPD=+,S△DPB=×DP×BE=,即可求出答案.
解答:∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵AE⊥AP,AE=AP=1,
∴∠AEP=∠APE=45°,∠EAF=∠BAD=90°,
∵∠BAP=∠BAP,
∴∠EAB=∠PAD,
∵在△EAB和△PAD中

∴△EAB≌△PAD(SAS),
∴∠EBA=∠ADP,BE=DP,∠APD=∠AEB=180°-45°=135°,
∴∠PEB=135°-45°=90°,
即△BEP是直角三角形,
∵AE=AP=1,
∴由勾股定理得:EP==BE=DP==
过B作BF⊥AE交AE的延长线于F,连接BD,
则∠PEB=180°-135°=45°,
∴∠EBF=45°=∠FEB,
∴EF=BF,
∵BE=
∴由勾股定理得:BF=EF=
∴S△APB+S△APD=S△APB+S△AEB=S四边形AEBP=S△AEF+S△PEB=×1×1+××=+
∵S△DPB=×DP×BE=××=
∴S正方形ABCD=2S△ABD=2(S△BPD+S△APD+S△APB)=2×(++)=4+
故答案为:4+
点评:本题考查了正方形性质,勾股定理,全等三角形的性质和判定,三角形的面积的应用,关键是分别求出△APD、△APB、△BPD的面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案