精英家教网 > 初中数学 > 题目详情

高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额-生产成本-投资)为z(万元).

(1)试写出y与x之间的函数关系式(不写x的取值范围)

(2)试写出z与x之间的函数关系式(不写x的取值范围)

(3)计算销售单价为160元时的年获利,并说明同样的年获利,销售单价还可定为多少元?相应的年销售量分别为多少万件?

(4)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图像说明:第二年的销售单价x(元)应确定在什么范围内?

答案:
解析:

  (1)依题意知:当销售单价定为x元时,年销售量减少(x100)万件,∴y20(x100)=-x30

  即yx之间的函数关系式是y=-x30

  (2)由题意,得

  z(30x)(x40)5001500=-x234x3200.即zx之间的函数关系式是z=-x234x3200

  (3)∵当x160时,z=-×160234×1603200=-320

  ∴-320=-x234x3200,整理,得x2340x288000

  解得x1160x2180

  即同样的年获利,销售单价还可以定为180元.当x160时,y=-×1603014

  当x180时,y=-×1803012

  即相应的年销售量分别为14万件和12万件.

  (4)z=-x234x3200=-(x170)2310

  ∴当x170时,z取最大值,为-310,即当销售单价定为170元,年获利最大,并且第一年年底公司还差310万元就可收回全部投资.

  第二年的销售单价定为x元时,年获利为:

  z(30x)(x40)310=-x234x1510

  当z1130时,即1130=-x234x1510,整理得x2340x264000,解得:x1120x2220,函数z=-x234x1510的图像大致如图所示.由图像可以看出:当120x220时,z1130.故第二年的销售单价应确定在不低于120元且不高于220元的范围内.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额一生产成本-投资)为z(万元).
(1)试写出y与x之间的函数关系式(不写x的取值范围);
(2)试写出z与x之间的函数关系式(不写x的取值范围);
(3)计算销售单价为160元时的年获利,并说明同样的年获利,销售单价还可定为多少元?相应的年销售量分别为多少万件?
(4)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?

查看答案和解析>>

科目:初中数学 来源: 题型:

某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代品,并投入资金1500万元进行批量生产.已知生产每件产品还需再投入40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利为z(万元).
(1)写出y与x及z与x的函数关系式;
(2)公司计划:在第一年按获利最大确定销售单价,进行销售;第二年年获利不低于1130万元,借助函数的说明,第二年的销售单价(元)应确定在什么范围内?

查看答案和解析>>

科目:初中数学 来源: 题型:

某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,现在投入资金1500万元购进生产线进行批量生产,已知生产每件产品的成本为40元,在销售过程中发现:当销售单价定为100元时,一年的销售量为20万件;销售单价每增加10元,年销售量就减少1万件.公司同时规定:该产品售价不得低于100元/件且不得超过180元/件.设销售单价为x(元),年销售量为y(万件),年盈利(年获利=处销售额-生产成本-投资)为w(万元).
(1)y与x的函数关系式并直接写出自变量x的取值范围;
(2)请说明第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;
(3)在(2)的前提下,即在第一年盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元,若能,求出第二年的产品售价;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•郑州模拟)目前,“低碳”已成为保护地球环境的热门话题,某高科技发展公司投资500万元,成功研制出一种市场需求量较大的低碳高科技产品,再投入资金1500万元作为固定投资.已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利为z(万元).(年获利=年销售额-生产成本-投资),
(1)试写出z与x之间的函数关系式.
(2)请通过计算说明到第一年年底,当z取最大值时,销销售单价x应定为多少?此时公司是盈利了还是亏损了?
(3)若该公司计划到第二年年底获利不低于1130万元,请借助函数的大致图象说明第二年的销售单价x(元)应确定在什么范围?

查看答案和解析>>

科目:初中数学 来源:2013-2014学年江苏省无锡市九年级上学期期末考试数学试卷(解析版) 题型:解答题

高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).

(1)试写出y与x之间的函数关系式(不写x的取值范围);

(2)试写出z与x之间的函数关系式(不写x的取值范围);

(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?

 

查看答案和解析>>

同步练习册答案