精英家教网 > 初中数学 > 题目详情

如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=________度.

90
分析:延长AE交CD于点F,根据两直线平行同旁内角互补可得∠BAE+∠EFC=180°,已知∠BAE的度数,不难求得∠EFC的度数,再根据三角形的外角的性质即可求得∠AEC的度数.
解答:如图,延长AE交CD于点F,
∵AB∥CD,
∴∠BAE+∠EFC=180°.
又∵∠BAE=120°,
∴∠EFC=180°-∠BAE=180°-120°=60°,
又∵∠DCE=35°,
∴∠AEC=∠DCE+∠EFC=30°+60°=90°.
故答案为90.
点评:此题主要考查学生对平行线的性质及三角形的外角性质的综合运用,注意辅助线的添加方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB∥CD,AD与BC相交于点E,如果AB=2,CD=6,AE=1,那么DE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

34、如图,AB∥CD,P是BC上的一个动点,设∠CDP=∠1,∠CPD=∠2,请你猜想出∠1、∠2与∠B之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB∥CD,∠1=58°,则∠2的度数是(  )

查看答案和解析>>

同步练习册答案