精英家教网 > 初中数学 > 题目详情
an+2÷an•an+7÷a5=
an+4
an+4
分析:直接利用同底数幂的乘法与同底数幂的除法的知识求解即可求得答案,注意同级运算从左到右依次进行.
解答:解:an+2÷an•an+7÷a5=a2•an+7÷a5=an+9÷a5=an+4
故答案为:an+4
点评:此题考查了同底数幂的乘法以及同底数幂的除法.注意掌握指数的变化是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、把多项式an+3+an-2(n为大于2的正整数)分解因式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南昌)已知抛物线yn=-(x-an2+an(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(bn-1,0)和An(bn,0),当n=1时,第1条抛物线y1=-(x-a12+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.
(1)求a1,b1的值及抛物线y2的解析式;
(2)抛物线y3的顶点坐标为(
9
9
9
9
);依此类推第n条抛物线yn的顶点坐标为(
n2
n2
n2
n2
);所有抛物线的顶点坐标满足的函数关系式是
y=x
y=x

(3)探究下列结论:
①若用An-1An表示第n条抛物线被x轴截得的线段长,直接写出A0A1的值,并求出An-1An
②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年江西省南昌市中考数学试卷(解析版) 题型:解答题

已知抛物线yn=-(x-an2+an(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(bn-1,0)和An(bn,0),当n=1时,第1条抛物线y1=-(x-a12+a1与x轴的交点为A(0,0)和A1(b1,0),其他依此类推.
(1)求a1,b1的值及抛物线y2的解析式;
(2)抛物线y3的顶点坐标为(______,______);依此类推第n条抛物线yn的顶点坐标为(______,______);所有抛物线的顶点坐标满足的函数关系式是______;
(3)探究下列结论:
①若用An-1An表示第n条抛物线被x轴截得的线段长,直接写出AA1的值,并求出An-1An
②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年江西省中考数学试卷(解析版) 题型:解答题

已知抛物线yn=-(x-an2+an(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(bn-1,0)和An(bn,0),当n=1时,第1条抛物线y1=-(x-a12+a1与x轴的交点为A(0,0)和A1(b1,0),其他依此类推.
(1)求a1,b1的值及抛物线y2的解析式;
(2)抛物线y3的顶点坐标为(______,______);依此类推第n条抛物线yn的顶点坐标为(______,______);所有抛物线的顶点坐标满足的函数关系式是______;
(3)探究下列结论:
①若用An-1An表示第n条抛物线被x轴截得的线段长,直接写出AA1的值,并求出An-1An
②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案