精英家教网 > 初中数学 > 题目详情
19.某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.
(1)初三(1)班接受调查的同学共有多少名;
(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;
(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.

分析 (1)利用“享受美食”的人数除以所占的百分比计算即可得解;
(2)求出听音乐的人数即可补全条形统计图;由C的人数即可得到所对应的圆心角度数;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出两名同学都是女生的情况,再利用概率公式即可求得答案.

解答 解:
(1)由题意可得总人数为10÷20%=50名;
(2)听音乐的人数为50-10-15-5-8=12名,“体育活动C”所对应的圆心角度数=$\frac{15}{50}×360°$=108°,
补全统计图得:

(3)画树状图得:

∵共有20种等可能的结果,选出都是女生的有2种情况,
∴选取的两名同学都是女生的概率=$\frac{2}{20}$=$\frac{1}{10}$.

点评 本题考查的是用列表法或画树形图求随机事件的概率,条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).
(1)当点N落在边BC上时,求t的值.
(2)当点N到点A、B的距离相等时,求t的值.
(3)当点Q沿D→B运动时,求S与t之间的函数表达式.
(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF与四边形PQMN的面积比为2:3时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.口袋中有12个小球,其中红球x个,黄球(2x+1)个,其余为白球.甲从口袋中任意摸出1个球,若为黄球则甲获胜;然后甲将摸出的球放回口袋中,摇匀,乙从口袋中摸出一个球,若为白球则乙胜.当x为何值时,游戏是公平的?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,△ABC中,AB=AC,以边BC为直径的⊙O与边AB,AC分别交于D,F两点,过点D作⊙O的切线DE,使DE⊥AC于E.
(1)求证:△ABC是等边三角形;
(2)过点E作EH⊥BC,垂足为点H,连接FH,若BC=4,求FH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,已知直线l:y=-x,双曲线y=$\frac{1}{x}$,在l上取一点A(a,-a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为$\sqrt{2}$或$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.
(1)判断AB与⊙O的位置关系,并说明理由;
(2)若PF:PC=1:2,AF=5,求CP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.若多边形的每一个内角均为135°,则这个多边形的边数为8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解不等式组$\left\{{\begin{array}{l}{2x<5}\\{3({x+2})≥x+4}\end{array}}\right.$并在数轴上表示解集.

查看答案和解析>>

同步练习册答案