精英家教网 > 初中数学 > 题目详情
如图:△ABD是等边三角形,以BD为边向外作等边三角形△DBC,点E,F分别在AB,AD上且AE=DF.连接BF于DE相交于点G,连接CG,证明下列结论:
①△AED≌△DFB;
②CG=DG+BG.
分析:①根据等边三角形的三条边都相等,三个内角都为60°的性质,利用全等三角形的判定定理SAS证得结论.
②延长FB到点M,使BM=DG,连接CM.构建全等三角形△CDG≌△CBM,然后利用全等三角形的性质来证明CG=DG+BG.
解答:证明:①∵△ABD是等边三角形,
∴AD=BD,∠A=∠ABD=60°,
在△AED与△DFB中,
AD=BD
∠A=∠BDF
AE=DF

∴△AED≌△DFB(SAS);

②延长FB到点M,使BM=DG,连接CM.
由(1)知,△AED≌△DFB,
∴∠ADE=∠DBF,
∵∠CDG=∠ADC-∠ADE=120°-∠ADE,∠CBM=120°-∠DBF.
∴∠CBM=∠CDG,
∵△DBC是等边三角形,
∴CD=CB,
在△CDG和△CBM中,
CD=CB
∠CDG=∠CBM
DG=BM

∴△CDG≌△CBM,
∴∠DCG=∠BCM,CG=CM,
∴∠GCM=∠DCB=60°,
∴△CGM是等边三角形,
∴CG=GM=BG+BM=BG+DG.
点评:本题考查了全等三角形的判定与性质、等边三角形的性质.本题充分利用了等边三角形的三条边相等和三个内角都是60°的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.
(1)试说明△ABD≌△BCE;
(2)△EAF与△EBA相似吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长与CE交于点E.
(1)求证:△ABD∽△CED.
(2)若AB=6,AD=2CD,求sin∠EBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,不添加辅助线,请你写出四个正确结论①
DB=DE
DB=DE
;②
BD⊥AC
BD⊥AC
;③
∠DBC=∠DEC=30°
∠DBC=∠DEC=30°
;④
△ABD≌△CBD
△ABD≌△CBD

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图:△ABD是等边三角形,以BD为边向外作等边三角形△DBC,点E,F分别在AB,AD上且AE=DF.连接BF于DE相交于点G,连接CG,证明下列结论:
①△AED≌△DFB;
②CG=DG+BG.

查看答案和解析>>

同步练习册答案