精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AB=20,AC=12,AD是中线,且AD=8,求BC的长.

解:延长AD至E,使DE=AD;连接BE,
∵AD=8,
∴AE=2×8=16,
在△ACD和△BED中,
AD=DE,∠ADC=∠EDB,BD=CD,
∴△ACD≌△BED,
∴BE=AC=12,
BE2+AE2=122+162=400,
AB2=202=400,
所以∠E=90°,
在Rt△BED中,BD===4
∵AD是中线,
∴BC=2BD=2×4=8
分析:延长AD至E使ED=AD,利用好AD是中线这个条件,再根据题中的数据的特点正好符合勾股定理逆定理,得到直角三角形,根据勾股定理就可以求出BD的长度了,再根据BC=2BD,所以BC的长也就求出了.
点评:作好辅助线,构造出直角三角形是解本题的关键,也是难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案