精英家教网 > 初中数学 > 题目详情
精英家教网已知抛物线y=-x2+bx+c的部分图象如图所示.
(1)求b、c的值;
(2)求y的最大值;
(3)写出当y>0时,x的取值范围.
分析:已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.顶点式:y=a(x-h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标.还考查了二次函数的对称轴x=-
b
2a
解答:解:(1)由图象知此二次函数过点(2,0),(0,3)
将点代入函数解析式得
-4+2b+c=0
c=3

解得
b=
1
2
c=3


(2)解析式为y=-x2+
1
2
x+3,
即为y=-(x-
1
4
2+
49
16

所以y的最大值为
49
16


(3)与x轴的交点坐标为(2,0),(-
3
2
,0)
所以当y>0时,x的取值范围为-
3
2
<x<2.
点评:本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识,还有数形结合思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案