精英家教网 > 初中数学 > 题目详情
若点P为y轴上的一点,且点P到点A(4,3)、点B(2,-1)的距离和最小,则点P的坐标为
[     ]
A.(0,
B.(0,
C.(0,
D.(0,0)
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知经过A、B、C三点的二次函数图象如图所示.
(1)求二次函数的解析式及抛物线顶点M的坐标;
(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t取值范围;
(3)将△OAC补成矩形,使△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,抛物线y=ax2+2
3
x+c
经过点A(-2,0)和原点O,顶点是D精英家教网
(1)求抛物线y=ax2+2
3
x+c的解析式;
(2)在x轴的上方的抛物线上有点M,连接DM,与线段OA交于N点,若S△MON:S△ODN=2:1,求点M的坐标;
(3)若点H是x轴上的一点,以H、A、D为顶点作平行四边形,该平行四边形的另一个顶点F在y轴上,写出H点的坐标(直接写出答案,不要求写出计算过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•天桥区二模)如图,抛物线y=ax2+bx+3过点A(1,0),B(3,0),与y轴相交于点C.
(1)求抛物线的解析式;
(2)若点E为抛物线对称轴上的一点,请探索抛物线上是否存在点F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,请求出所有点F的坐标;若不存在,请说明理由;
(3)若点P为线段OC上的动点,连接BP,过点C作CN垂直于直线BP,垂足为N,当点P从点O运动到点C时,求点N运动路径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象如图所示,
(1)求二次函数的解析式及顶点M的坐标;
(2)若点N为线段BM上的一点,过点N作NQ⊥X轴于点Q,当点N在BM上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC的面积
没有空
没有空
为S,求S与t之间的函数关系式及自变量的取值范围;
(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案