精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD是边长为2的正方形,E是AD边上一点,将△CDE绕点C沿逆时针方向旋转至△CBF,连接EF交BC于点G.若EC=EG,则DE=________.


分析:首先根据旋转的性质推出相等的边和相等的角,再由正方形的性质,推出直角和相等的边,推出△CEF为等腰直角三角形后,即得,,通过求证△AEF∽△DEC,得比例式,然后根据CD=AB=2,求出AF=2,即可推出DE=BF=2-2.
解答:∵△CDE绕点C沿逆时针方向旋转至△CBF,
∴∠DCE=∠BCF,CE=CF,DE=BF,
∵正方形ABCD,
∴∠DCB=90°,CD=AD=AB=BC=2,
∴∠ECB+∠BCF=90°,
∴△CEF为等腰直角三角形,

∵EC=EG,
∴∠ECG=∠EGC=∠BGF,
∵∠DCE+∠ECG=90°,
∴∠DCE+∠BGF=90°,
∵∠BGF+∠BFG=90°,
∴∠DCE=∠BFG,
∵∠D=∠A=90°,
∴△AEF∽△DEC,

∵CD=AB=2,
∴AF=2
∴DE=BF=2-2.
故答案为2-2.
点评:本题主要考查正方形的性质,旋转的性质,相似三角形的判定及性质,等腰直角三角形的判定及性质等知识点的综合应用,关键在于推出△CEF为等腰直角三角形,得出比例式,通过求证△AEF∽△DEC,推出比例式后,结合已知求出AF的长度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案