精英家教网 > 初中数学 > 题目详情

如图Ⅰ,四边形AEFG与ABCD都是正方形,它们的边长分别为a、b(b≥2a),且点F在AD上.(以下问题的结果可用a、b的代数式表示)

(1)求S△DBF

(2)把正方形AEFG绕点A按逆时针方向旋转得图Ⅱ,求图中S△DBF

(3)把正方形AEFG绕点A旋转任意角度,在旋转过程中,S△DBF是否存在最大值、最小值?如果存在,试求出最大值、最小值;若不存在,请说明理由.

答案:
解析:

略。


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,平行四边形ABCD中,E是AB上一点,DE与AC交于点F,且S△AEF=6cm2,S△DCF=54cm2,则S平行四边形ABCD=
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在扇形AEF中,∠A=90°,点C为
EF
上任意一点(不与点E、F重合),四边形ABCD为矩形,则当点C在
EF
上运动时(不与E、F点重合),BD长度的变化情况是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宜宾)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=
1
2
AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•达州)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.

(1)思路梳理
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据
SAS
SAS
,易证△AFG≌
△AEF
△AEF
,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系
∠B+∠D=180°
∠B+∠D=180°
时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读探究题:如图1,四边形ABCD是正方形(正方形的四边相等,四个角都是直角),点E是边BC的中点.∠AEF=90°,且EF交∠DCG的平分线CF于点F,

(1)求出角∠ECF的度数?
(2)求证:AE=EF.
(3)如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为这样的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

查看答案和解析>>

同步练习册答案