精英家教网 > 初中数学 > 题目详情

当x=________时,数学公式的值最大,其最大值为________.

1    
分析:设y==-(x-1)2+,此题转化为求y的最大值,有了顶点式,即可容易得知y的最大值.
解答:设y=
∵y==-(x-1)2+
开口向下,所以有最大值,在顶点处取得最大值,
即当x=1时,最大值y=
故答案为:1,
点评:本题考查了二次函数的最值,难度较小,关键化成函数的标准形式为顶点形式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-6,0)、B(2,0),与y轴交于点C(0,-6).
(1)求此抛物线的函数表达式,写出它的对称轴;
(2)若在抛物线的对称轴上存在一点M,使△MBC的周长最小,求点M的坐标;
(3)若点P(0,k)为线段OC上的一个不与端点重合的动点,过点P作PD∥CM交x于点D,连接MD、MP,设△MPD的面积为S,求当点P运动到何处时S的值最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量.根据经验估计,每多种一棵橙树,平均每棵树就会少结5个橙子.
(1)写出果园橙子的总产量y(个)与增种橙树的棵数x(棵)的函数关系式;
(2)求出当x取何值时y的值最大?y的值最大是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•济南)如图1,在△ABC中,AB=AC=4,∠ABC=67.5°,△ABD和△ABC关于AB所在的直线对称,点M为边AC上的一个动点(重合),点M关于AB所在直线的对称点为N,△CMN的面积为S.
(1)求∠CAD的度数;
(2)设CM=x,求S与x的函数表达式,并求x为何值时S的值最大?
(3)S的值最大时,过点C作EC⊥AC交AB的延长线于点E,连接EN(如图2),P为线段EN上一点,Q为平面内一点,当以M,N,P,Q为顶点的四边形是菱形时,请直接写出所有满足条件NP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

设x1,x2,…,x9均为正整数,且x1<x2<x3<…<x9,x1+x2+…+x9=220,则当x1+x2+…+x5的值最大时,x9-x1的最小值是多少?

查看答案和解析>>

同步练习册答案