精英家教网 > 初中数学 > 题目详情

已知:如图,EF分别是□ABCD的边ADBC的中点.

求证:AFCE

答案:
解析:

  证明:方法1:

  ∵四边形ABCD是平行四边形,且EF分别是ADBC的中点,∴AECF  2分

  又∵四边形ABCD是平行四边形,

  ∴ADBC,即AECF

  ∴四边形AFCE是平行四边形  3分

  ∴AFCE  1分

  方法2:

  ∵四边形ABCD是平行四边形,且EF分别是ADBC的中点,

  ∴BFDE  2分

  又∵四边形ABCD是平行四边形,

  ∴∠B=∠DABCD

  ∴△ABF≌△CDE  3分

  ∴AFCE  1分


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,CE、CF分别是△ABC的内外角平分线,过点A作CE、CF的垂线,垂足分别为E、F.
(1)求证:四边形AECF是矩形;
(2)当△ABC满足什么条件时,四边形AECF是正方形?

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知:如图,E,F分别是平行四边形ABCD的边AD,BC的中点.
求证:AF=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△BCE、△ACD分别是以BE、AD为斜边的直角三角形,且BE=AD,△CDE是等边三角形.求证:△ABC是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,E,F分别是?ABCD的边AD,BC的中点.求证:AF=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,BE、CF分别是△ABC的边AC、AB上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.请你判断线段AD与AG有什么关系?并证明.

查看答案和解析>>

同步练习册答案