精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(点D不能到达点B、C),连接AD,作∠ADE=45°,DE交AC于E.当△ADE为等腰三角形时,线段AE的长为
1或4-2
2
1或4-2
2
分析:分类讨论:当EA=ED,△ADE为等腰三角形,由∠ADE=45°得到∠EAD=45°,∠AED=90°,则AD平分∠BAC,AD⊥BC,DE⊥AC,然后根据等腰直角三角形的性质得到DE=
1
2
AC=1;当DA=DE,△ADE为等腰三角形,由∠ADE=45°得到∠ADB+∠EDC=180°-45°=135°,而∠EDC+∠DEC=135°,所以∠ADB=∠DEC,根据三角形相似的判定得到△ABD∽△DCE,则BD:CE=AB:DC=AD:DE,利用AD=DE得到AB=DC=2,BD=CE;由于∠BAC=90°,AB=AC=2,跟级等腰直角三角形的性质得BC=2
2
,所以BD=2
2
-2=EC,然后根据AE=AC-EC进行计算.
解答:解:当EA=ED,△ADE为等腰三角形,
∵∠ADE=45°,
∴∠EAD=45°,∠AED=90°,
∵∠BAC=90°,
∴AD平分∠BAC,AD⊥BC,DE⊥AC,如图,
∵AB=AC=2,
∴DE=
1
2
AC=1;
当DA=DE,△ADE为等腰三角形,如图,
∵∠ADE=45°,
∴∠ADB+∠EDC=180°-45°=135°,
而∠EDC+∠DEC=135°,
∴∠ADB=∠DEC,
而∠B=∠C,
∴△ABD∽△DCE,
∴BD:CE=AB:DC=AD:DE,
而AD=DE,
∴AB=DC=2,BD=CE,
∵∠BAC=90°,AB=AC=2,
∴BC=
2
AC=2
2

∴BD=2
2
-2=EC,
∴AE=AC-EC=2-(2
2
-2)=4-2
2

故答案为1或4-2
2
点评:本题考查了相似三角形的判定与性质:有两组角对应相等的两个三角形相似;相似三角形的对应线段的比等于相似比.也考查了等腰直角三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案