精英家教网 > 初中数学 > 题目详情

如图所示,在直角坐标系xOy中,一次函数y1=k1x+b(k≠0)的图象与反比例函数(x>0)的图象交于A(1,4),B(3,m)两点.

(1)试确定上述反比例函数和一次函数的表达式;
(2)在第一象限内,x取何值时,一次函数的函数值大于反比例函数的函数值;
(3)求△AOB的面积.

(1)y1=﹣x+ (2)x取1<x<3 (3)

解析试题分析:(1)把A(1,4)代入数即可求出反比例函数的解析式,把B的坐标代入即可求出B的坐标,把A、B的坐标代入一次函数的解析式,得出方程组,求出方程组的解,即可得出一次函数的解析式;
(2)根据图象和A、B的坐标即可得出答案;
(3)过A作AE⊥ON于E,过B作BF⊥OM于F,求出M、N的坐标,根据SAOB=SNOM﹣SAON﹣SBOM代入即可求出△AOB的面积.
解:(1)把A(1,4)代入数(x>0)得:4=
解得:k2=4,
即反比例函数的解析式是:y2=
把B(3,m)代入上式得:m=
即B(3,),
把A、B的坐标代入y1=k1x+b(k≠0)得:

解得:k=﹣,b=
∴一次函数的解析式是:y1=﹣x+
(2)从图象可知:在第一象限内,x取1<x<3时,一次函数的函数值大于反比例函数的函数值;
(3)过A作AE⊥ON于E,过B作BF⊥OM于F,

∵A(1,4),B(3,),
∴AE=1,BF=
∵设直线AB(y1=﹣x+)交y轴于N,交x轴于M,
当x=0时,y=
当y=0时,x=4,
即ON=,OM=4,
∴SAOB=SNOM﹣SAON﹣SBOM
=××4﹣××1﹣×4×
=
考点:反比例函数与一次函数的交点问题.
点评:本题考查了三角形的面积,一次函数与反比例函数的交点问题,用待定系数法求出一次函数与反比例函数的解析式等知识点,本题具有一定的代表性,是一道比较好的题目.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,精英家教网sin∠BOA=
35

求:(1)点B的坐标;(2)cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大丰市一模)如图所示,在直角坐标平面内,函数y=
mx
(x>0,m是常数)
的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD、DC、CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)四边形ABCD能否为菱形?如果能,请求出四边形ABCD为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连结AD、DC、CB.

1.若△ABD的面积为4,求点B的坐标

2.求证:DC∥AB

3.四边形ABCD能否为菱形?如果能,请求出四边形ABCD 为菱形时,直线AB的函数解析式;如果不能,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连结AD、DC、CB.

【小题1】若△ABD的面积为4,求点B的坐标
【小题2】求证:DC∥AB
【小题3】四边形ABCD能否为菱形?如果能,请求出四边形ABCD 为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省盐城市大丰市中考数学一模试卷(解析版) 题型:解答题

如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD、DC、CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)四边形ABCD能否为菱形?如果能,请求出四边形ABCD为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案