精英家教网 > 初中数学 > 题目详情

x1x2(x1x2)是方程(xa)(xb)=1(ab)的两个根,则实数x1x2ab的大小关系为

[  ]
A.

x1x2ab

B.

x1ax2b

C.

x1abx2

D.

ax1bx2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

有一个定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c为系数且为常数)的两个根,则x1+x2=-
b
a
、x1•x2=
c
a
,这个定理叫做韦达定理.如:x1、x2是方程x2+2x-1=0的两个根,则x1+x2=-2、x1•x2=-1.
若x1、x2是方程x2+mx-2m=0的两个根.(其中m≠0)试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示).
(2)x12+x22的值(用含有m的代数式表示).[提示:x12+x22=(x1+x22-2x1x2]
(3)若
x1
x2
+
x2
x1
=1
,试求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1,x2是一元二次方程ax2+bx+c=0(a≠0,a,b,c为系数且为常数)的两个根,则x1+x2=-
b
a
,x1•x2=
c
a
.这个定理叫做韦达定理.
如:x1,x2是方程x2+2x-1=0的两个根,则x1+x2=-2、x1•x2=-1
已知:M、N是方程x2-x-1=0的两根,
记S1=M+N;S2=M2+N2,…Sn=Mm+Nn
(1)S1=_____,S2=______,S3=_______,S4=_______,(直接写出答案)
(2)当n为不小于3的整数时,有(1)猜想SnSn-1Sn-2之间有何关系?
(3)利用(2)猜想[
1+
5
2
]8+[
1-
5
2
]8

查看答案和解析>>

科目:初中数学 来源: 题型:

有一个定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c为系数且为常数)的两个实数根,则x1+x2=-
b
a
、x1•x2=
c
a
,这个定理叫做韦达定理. 如:x1、x2是方程x2+2x-1=0的两个实数根,则x1+x2=-2、x1•x2=-1. 若x1,x2是方程2x2+(m-1)x-
1
2
m=0
的两个实根.试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示);
(2)
x
2
1
+
x
2
2
的值(用含有m的代数式表示);
(3)若(x1-x2)2=1,试求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

有一个定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c 为系数且为常数)的两个根,则x1+x2=-
b
a
、x1•x2=
c
a
,这个定理叫做韦达定理.如:x1、x2是方程x2+2x-1=0的两个根,则x1+x2=-2、x1•x2=-1.
若x1、x2是方程2x2+mx-2m+1=0的两个根.试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示).
(2)x12+x22的值(用含有m的代数式表示).
(3)若(x1-x22=2,试求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c 为系数且为常数)的两个根,则x1+x2=-
b
a
、x1•x2=
c
a
,这个定理叫做韦达定理.如:x1、x2是方程x2+2x-1=0的两个根,则x1+x2=-2、x1•x2=-1.
若x1、x2是一元两次方程2x2+mx-2m+1=0的两个实数根.试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示).
(2)若x12+x22=4,试求m的值.

查看答案和解析>>

同步练习册答案