精英家教网 > 初中数学 > 题目详情

如图,已知平面上一条直线l和三点A、B、C,过点A、B、C分别作直线l的垂线,观察这三条垂线之间的位置关系,你发现了什么?是否一定成立?

再画几条垂线试试,看是否仍然成立.

(如果过点A、B、C分别作直线l的平行线呢?)

答案:
解析:

图略,发现:三条垂线互相平行,一定成立.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①,已知平面内一点P与一直线l,如果过点P作直线l′⊥l,垂足为P′,那么垂足P′叫做点P在直线l上的射影;如果线段PQ的两个端点P和Q在直线l上的射影分别为点P′和Q′,那么线段P′Q′叫做线段PQ在直线l上的射影.
(1)如图②,E、F为线段AD外两点,EB⊥AD,FC⊥AD,垂足分别为B、C.
则E点在AD上的射影是
 
点,A点在AD上的射影是
 
点,
线段EF在AD上的射影是
 
,线段AE在AD上的射影是
 

(2)根据射影的概念,说明:直角三角形斜边上的高是两条直角边在斜边上射影的比例中项.(要求:画出图形,写出说理过程.)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(下面两小题的结果都精确到0.1米,参考数据:
3
≈1.732)
(1)若修建的斜坡BE的坡度为1:0.8,则平台DE的长为
14.0
14.0
米;
(2)斜坡前的池塘内有一座建筑物GH,小明在平台E处测得建筑物顶部H的仰角(即∠HEM)为30°,测得建筑物顶部H在池塘中倒影H′的俯角为45°(即∠H′EM),测得点B、C、A、G、H、H′在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,求建筑物GH的高和AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图①,已知平面内一点P与一直线l,如果过点P作直线l′⊥l,垂足为P′,那么垂足P′叫做点P在直线l上的射影;如果线段PQ的两个端点P和Q在直线l上的射影分别为点P′和Q′,那么线段P′Q′叫做线段PQ在直线l上的射影.
(1)如图②,E、F为线段AD外两点,EB⊥AD,FC⊥AD,垂足分别为B、C.
则E点在AD上的射影是______点,A点在AD上的射影是______点,
线段EF在AD上的射影是______,线段AE在AD上的射影是______;
(2)根据射影的概念,说明:直角三角形斜边上的高是两条直角边在斜边上射影的比例中项.(要求:画出图形,写出说理过程.)

查看答案和解析>>

科目:初中数学 来源:2009年江苏省南京市白下区中考数学一模试卷(解析版) 题型:解答题

如图①,已知平面内一点P与一直线l,如果过点P作直线l′⊥l,垂足为P′,那么垂足P′叫做点P在直线l上的射影;如果线段PQ的两个端点P和Q在直线l上的射影分别为点P′和Q′,那么线段P′Q′叫做线段PQ在直线l上的射影.
(1)如图②,E、F为线段AD外两点,EB⊥AD,FC⊥AD,垂足分别为B、C.
则E点在AD上的射影是______点,A点在AD上的射影是______点,
线段EF在AD上的射影是______,线段AE在AD上的射影是______;
(2)根据射影的概念,说明:直角三角形斜边上的高是两条直角边在斜边上射影的比例中项.(要求:画出图形,写出说理过程.)

查看答案和解析>>

同步练习册答案