精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠C=90°,它的内切圆O分别与边AB、BC、CA相切于点D、E、F,且BD=12,AD=8,求⊙O的半径r.

解:连接OE,OF,
∵⊙O分别与边AB、BC、CA相切于点D、E、F,
∴DE⊥BC,DF⊥AC,AF=AD=8,BE=BD=12,
∴∠OEC=∠OFC=90°,
∵∠C=90°,
∴四边形OECF是矩形,
∵OE=OF,
∴四边形OECF是正方形,
∴EC=FC=r,
∴AC=AF+FC=8+r,BC=BE+EC=12+r,AB=AD+BD=12+8=20,
在Rt△ABC中,AB2=BC2+AC2
∴202=(12+r)2+(8+r)2
∴r2+20r-96=0,
即(r-4)(r+24)=0,
解得:r=4或r=-24(舍去).
∴⊙O的半径r为4.
分析:首先连接OE,OF,易证得四边形OECF是正方形,然后由切线长定理可得AC=AF+FC=8+r,BC=BE+EC=12+r,AB=AD+BD=12+8=20,又由勾股定理可得方程202=(12+r)2+(8+r)2,解此方程即可求得答案.
点评:此题考查了三角形的内切圆的性质、正方形的判定与性质、切线长定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案