(1)△CDP∽△PAE.
证明:∵四边形ABCD是矩形,
∴∠D=∠A=90°,CD=AB=6,
∴∠PCD+∠DPC=90°,
又∵∠CPE=90°,
∴∠EPA+∠DPC=90°,
∴∠PCD=∠EPA,
∴△CDP∽△PAE.
(2)在Rt△PCD中,由tan∠PCD=

,
∴

,
∴

,
解法1:由△CDP∽△PAE知:

,
∴

,
解法2:由△CDP∽△PAE知:∠EPA=∠PCD=30°,
∴

;
(3)假设存在满足条件的点P,设DP=x,则AP=11-x,
∵△CDP∽△PAE,
根据△CDP的周长等于△PAE周长的2倍,得到两三角形的相似比为2,
∴

即

,
解得x=8,
此时AP=3,AE=4.
分析:(1)根据矩形的性质,推出∠D=∠A=90°,再由直角三角形的性质,得出∠PCD+∠DPC=90°,又因∠CPE=90°,推出∠EPA+∠DPC=90°,∠PCD=∠EPA,从而证明△CDP∽△PAE;
(2)由△CDP∽△PAE得出∠EPA=∠PCD=30°,由角的正切值定理知AE=AP•tan∠EAP,代入相应的数据即可求得答案;
(3)假设存在满足条件的点P,设DP=x,则AP=11-x,由△CDP∽△PAE知

,解得x=8,此时AP=3,AE=4.
点评:本题考查矩形的性质以及三角形的相似性质,综合性较强.