精英家教网 > 初中数学 > 题目详情
如果ABC三点到直线L的距离不相等,那ABC三点可以确定一个圆.        (  )

 

答案:F
提示:

这三点所在的直线与直线L不平形式的情况就是反例。

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:二次函数y=
1
4
x2-
5
2
x+6
的图象与x轴从左到右的两个交点依次为A、B,与y轴交点为C;
(1)求A、B、C三点的坐标;
(2)求过B、C两点的一次函数的解析式;
(3)如果P(x,y)是线段BC上的动点,O为坐标原点,试求△POA的面积S与x之间的函数关系式,并求出自变量x的取值范围;
(4)是否存在这样的点P,使得PO=AO?若存在,求出点P的坐标;若不存在说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,梯形ABCD中,AD∥BC,∠ABC=90°,AD=4,BC=6,AB=3,以BC为x轴,AB为y轴,建立平面直角坐标系xoy.
(1)求过A,C,D三点的抛物线的解析式;
(2)如果一动点P由B点开始沿BC边以1个单位长度/s的速度向点c移动,连接DP,作射线PE⊥DP,PE与直线AB交于点E,当点P移动到第t秒时,点E与点B的距离为s;
①试写出s与t的函数关系式,并写出t的取值范围;
②s是否存在最大值?若存在,直接写出这个最大值,并求出这时PE所在直精英家教网线的解析式;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•盐田区二模)已知:如图,在平面直角坐标系xOy中,以点P(2,
3
)为圆心的圆与y轴相切于点A,与x轴相交于B、C两点(点B在点C的左边).
(1)求经过A、B、C三点的抛物线的解析式;
(2)在(1)中的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的
1
2
.如果存在,请直接写出所有满足条件的M点的坐标;如果若不存在,请说明理由;
(3)如果一个动点D自点P出发,先到达y轴上的某点,再到达x轴上某点,最后运动到(1)中抛物线的顶点Q处,求使点D运动的总路径最短的路径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3);
(1)求抛物线的对称轴及k的值;
(2)抛物线的对称轴上是否存在一点P,使得|PB-PC|的值最大?若存在,求出点P的坐标;
(3)如果点M是抛物线在第三象限的一动点;当M点运动到何处时,M点到AC的距离最大?求出此时的最大距离及M的坐标.

查看答案和解析>>

同步练习册答案