精英家教网 > 初中数学 > 题目详情
已知如图,四边形ABCD是正方形,G是BC上的一点,DE⊥AG于E,BF⊥AG于F。
(1)求证:△ABF≌△DAE;
(2)判断AF与EF+FB有何数量关系,并说明理由。
解:(1)证明:∵四边形ABCD是正方形,
∴∠BAD=90°,
∴∠BAF+∠DAE=90°,
∵DE⊥AG于E,
∴∠DAE+∠ADE=90°,
∴∠BAF=∠ADE,
∵DE⊥AG于E,BF⊥AG于F,
∴∠AFB=∠DEA=90°,
∵在正方形ABCD中,AB=AD,
∴△ABF≌△DAE;
(2)AF=BF+EF;
理由:∵△ABF≌△DAE,
∴BF=AE,
∵AF=AE+EF,
∴AF=BF+EF。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.
(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知如图平行四边形ABCD,分别以AB,BC为边作等边△EAB与等边△FBC,连接EF,DF与DE,猜想△DEF的形状并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,四边形ABOC为矩形,AB=4,AC=6,一次函数经过B点与反比例函数交于D点,与x轴交于E点,且D为AC的中点.
①求点D和点E的坐标;
②求一次函数和反比例函数的解析式;
③在x轴上是否存在点P,使△PBD的周长最小?若存在,求出点P的坐标和△PBD的周长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,四边形ABCD中,∠B=90°,AB=4,BC=3,CD=12,AD=13,求这个四边形的面积.

查看答案和解析>>

同步练习册答案