精英家教网 > 初中数学 > 题目详情

有一块平行四边形形状的铁片,且长边是短边的2倍,现在想用这块铁片截一个直角三角形,并要求斜边与一条长边重合,面积最大.问能否截出符合条件的三角形?如能截出,画出截线;如不能截出,说明理由.

答案:
解析:

取CD中点M,连接AM,BM,可证AM⊥BM.故沿AM,BM剪下即可.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图(1),在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c.
操作示例
我们可以取直角梯形ABCD的腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新图形.(如图2)
思考发现  
小敏在操作后发现,该剪拼方法就是将△PEC绕点P逆时针旋转180°到△PED的位置,易知PE与PF在同一直线上,又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一直线上,那么构成的新图形是一个四边形,而且进一步可证得,该四边形是一个特殊的平行四边形--矩形.
实践探究
(1)矩形ABEF的面积是
 
.(用含a、b、c的式子表示)
(2)类比图(2)的剪接办法,请你就图(3)和图(4)中的两种情形分别画出剪拼成一个平行四边形的示意图.(注:图(3)和图(4)中的四边形均为梯形)
精英家教网
解决问题
小明原来有一块七巧板,形状为平行四边形ACDE,如图(5)所示,不小心损坏了一条边变成了五边形ABCDE的形状如图(6)所示,小明现在打算将图(6)中五边形在不改变其面积的前提下通过裁剪与拼接变成一个平行四边形,请你帮他画出剪接的示意图,并说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源:河北省石家庄市42中2010届初三毕业班第二次模拟考试数学试题 题型:059

如图,在直角梯形ABCD中,ADBC,∠B=∠A=90°,ADaBCbAB=c

操作示例

我们可以取直角梯形ABCD的腰CD的中点P,过点PPEAB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新图形.(如图1)

思考发现

小敏在操作后发现,该剪拼方法就是将△PEC绕点P逆时针旋转180°到△PED的位置,易知PEPF在同一直线上,又因为在梯形ABCD中,ADBC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以ADDF在同一直线上,那么构成的新图形是一个四边形,而且进一步可证得,该四边形是一个特殊的平行四边形——矩形.

实践探究

(1)矩形ABEF的面积是________.(用含a、b、c的式子表示)

(2)类比图(1)的剪接办法,请你就图(2)和图(3)中的两种情形分别画出剪拼成一个平行四边形的示意图.(注:图(2)和图(3)中的四边形均为梯形)

解决问题

小明原来有一块七巧板,形状为平行四边形ACDE,如图(4)所示,不小心损坏了一条边变成了五边形ABCDE的形状如图(5)所示,小明现在打算将图(5)中五边形在不改变其面积的前提下通过裁剪与拼接变成一个平行四边形,请你帮他画出剪接的示意图,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

亲爱的同学,你准备好了吗?让我们一起进行一次研究性学习:研究用一条直线等分几何图形的面积.我们很容易发现这样一个事实:
如图①,对于三角形ABC,取BC边的中点D,过A,D两点画一条直线,即可把△ABC分为面积相等的两部分.

(1)如图②,对于平行四边形ABCD,如何画一条直线把平行四边形ABCD分为面积相等的两部分.
答:______(写出一种方案即可).理由是:______.
(2)受上面的启发,请你研究以下两个问题:
①如图③,一块平行四边形的稻田里有一个圆形的蓄水池,现要从蓄水池引一条笔直的水渠,并使蓄水池两侧的稻田面积相等,请你画出你的设计方案,保留作图痕迹,不必说明理由.
②某农业研究所有一块梯形形状的实验田如图3④,准备把这块实验田种上面积相同的西红柿和青椒(都是新品种),应该如何分割,请你分别在图3④、图3⑤中设计两种不同的分割方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年河北省石家庄市第42中学中考数学二模试卷(解析版) 题型:解答题

如图(1),在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c.
操作示例
我们可以取直角梯形ABCD的腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新图形.(如图2)
思考发现  
小敏在操作后发现,该剪拼方法就是将△PEC绕点P逆时针旋转180°到△PED的位置,易知PE与PF在同一直线上,又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一直线上,那么构成的新图形是一个四边形,而且进一步可证得,该四边形是一个特殊的平行四边形--矩形.
实践探究
(1)矩形ABEF的面积是______.(用含a、b、c的式子表示)
(2)类比图(2)的剪接办法,请你就图(3)和图(4)中的两种情形分别画出剪拼成一个平行四边形的示意图.(注:图(3)和图(4)中的四边形均为梯形)

解决问题
小明原来有一块七巧板,形状为平行四边形ACDE,如图(5)所示,不小心损坏了一条边变成了五边形ABCDE的形状如图(6)所示,小明现在打算将图(6)中五边形在不改变其面积的前提下通过裁剪与拼接变成一个平行四边形,请你帮他画出剪接的示意图,并说明理由.

查看答案和解析>>

同步练习册答案