精英家教网 > 初中数学 > 题目详情
如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标。
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积。
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似.若存在,请求出M点的坐标;否则,请说明理由。

解:(1)令y=0,得x2-1=0,得x=±1         
        令x=0,y= -1 
       ∴A(-1,0), B(1,0),C(0,-1)
(2)∵OA=OB=OC= 1  ∴∠BAC=∠ACO=∠BCO= 45°  
    ∵AP∥CB,∴ ∠PAB= 45°  
    过点P作PE⊥x轴于E,则△APE为等腰直角三角形
    令OE=a,则PE=a+1 ∴P(a,a+1)
   ∵点P在抛物线y=x2-1上  ∴a+1=a2-1
   解得a1=2,a2=-1(不合题意,舍)
   ∴PE=3   ∴四边形ACBP的面积S=AB·OC+AB·PE
                                                    =
(3)假设存在  ∵∠PAB=∠BAC =45°∴PA⊥AC
   ∵MG⊥x轴于点G,∴∠MGA=∠PAC = 90°
   在Rt△AOC中,OA=OC=1   ∴AC=
   在Rt△PAE中,AE=PE=3    ∴AP=
   设M点的横坐标为m,则M (m,m2-1)
  ①点M在y轴左侧时,则m<-1
 (ⅰ) 当△AMG∽△PCA时,有=
   ∵AG= -m-1,MG=m2-1
   即  解得m1= -1(舍),m2=(舍)
  (ⅱ) 当△MAG∽△PCA时有=
  即  解得m1= -1(舍),m2= -2  ∴M(-2,3)
② 点M在y轴右侧时,m>1
 (ⅰ) 当△AMG∽△PCA时有=
  ∵AG=m+1 ,MG=m2-1   ∴
解得m1= -1(舍),m2=   ∴M(
 (ⅱ) 当△MAG∽△PCA时有=
  即  解得:m1= - 1(舍),m2=4  ∴M(4,15)
∴存在点M,使以A、M、G三点为顶点的三角形与△PCA相似
 M点的坐标为





练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知抛物线y=x2-4x+3与x轴交于A,B两点,C为抛物线的顶点,过点A作AP∥精英家教网BC交抛物线于点P.
(1)求A,B,C三点坐标;
(2)求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在点M,过点M作ME⊥x轴于点E,使A,M,E三点为顶点的三角形与△PCA相似?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知抛物线y=ax2+bx+c(a≠0)经过原点和点(-2,0),则2a-3b
 
0.(>、<或=)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),抛物线的对称轴x=2交x轴于点E.
(1)求交点A的坐标及抛物线的函数关系式;
(2)在平面直角坐标系xOy中是否存在点P,使点P与A,B,C三点构成一个平行四边形?若存在,请直接写出点P坐标;若不存在,请说明理由;
(3)连接CB交抛物线对称轴于点D,在抛物线上是否存在一点Q,使得直线CQ把四边形DEOC分成面积比为1:7的两部分?若存在,请求出点Q坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衡阳)如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)
(1)求此抛物线的解析式.
(2)过点P作CB所在直线的垂线,垂足为点R,
①求证:PF=PR;
②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;
③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.

查看答案和解析>>

同步练习册答案