精英家教网 > 初中数学 > 题目详情

如图,已知D为△ABC的边AB上的一点,且∠ACD=∠B,S△ACD:S△DBC=1:3.求:数学公式的值.

解:∵∠ACD=∠B,∠A=∠A,
∴△ACD∽△ABC.
∵S△ACD:S△DBC=1:3,
∴S△ACD:S△ABC=1:4.
=
=
分析:先根据相似三角形的判定定理得出△ACD∽△ABC,再由S△ACD:S△DBC=1:3,得出S△ACD:S△ABC=1:4,再根据相似三角形面积的比等于相似比的平方即可得出结论.
点评:本题考查的是相似三角形的判定与性质,根据题意判断出△ACD∽△ABC是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、如图,已知,直线AB∥CD,若∠1=120°,则∠2的度数为
60°

查看答案和解析>>

科目:初中数学 来源: 题型:

3、如图,已知⊙O,AB为直径,AB⊥CD,垂足为E,由图你还能知道哪些正确的结论请把它们一一写出来
CE=ED,弧AC=弧AD,弧CB=弧DB

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AD为△ABC的角平分线,DE∥AB,如果
AE
EC
=
2
3
,那么
DE
AB
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•成华区二模)如图,已知半径为R的⊙O1的直径AB和弦CD交于点M,点A为
CD
的中点.半径为r的⊙O2是过点A、C、M的圆,设点A到CD的距离为d.
(1)求证:r2=
1
2
Rd

(2)连接BD,若AC=5,O1M=
7
6
,求BD的长;
(3)过点O1作EF∥AC,交CD于点E,交过点B的切线于点F.连接AF,交CD于点G,求证:MG=CG.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•苏州)如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4).
(1)当x=
52
时,求弦PA、PB的长度;
(2)当x为何值时,PD•CD的值最大?最大值是多少?

查看答案和解析>>

同步练习册答案