精英家教网 > 初中数学 > 题目详情

如图,已知AD为∠BAC的平分线,点O在AD上,OE⊥BD于E,OF⊥CD于F,且OE=OF,请你猜想AB与AC有什么样的数量关系?并证明.

解:AB=AC,理由如下:
∵OE⊥BD,OF⊥CD,且OE=OF,
∴DA为∠BDC的平分线,
∴∠ADB=∠ADC,
∵AD为∠BAC的平分线,
∴∠BAD=∠CAD,
在△ABD和△ACD中,

∴△ABD≌△ACD(ASA),
∴AB=AC.
分析:AB=AC,理由为:由OE⊥BD,OF⊥CD,且OE=OF,利用在角内部,到角两边距离相等的点一定在角的平分线上,得到DA为角平分线,得到一对角相等,再由AD为角平分线得到一对角相等,再由AD为公共边,利用ASA可得出三角形ABD与三角形ACD全等,由全等三角形的对应边相等可得出AB=AC,得证.
点评:此题考查了全等三角形的判定与性质,以及角平分线定义,全等三角形的判定方法有:SSS;SAS;ASA;AAS,以及HL(直角三角形判定全等的方法).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AD为等腰三角形ABC底边上的高,且tan∠B=
4
3
.AC上有一点E,满足AE:EC=2:3.那么,tan∠ADE是(  )
A、
3
5
B、
2
3
C、
1
2
D、
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果
AE
EC
=
2
3
,那么
AB
AC
=(  )
A、
1
3
B、
2
3
C、
2
5
D、
3
5

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AD为∠BAC的平分线,且AD=2,AC=
3
,∠C=90°,求BC的长及△ABC外接圆直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,已知AD为⊙O的切线,⊙O的直径是AB=2,弦AC=1,则∠CAD=
30
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AD为△ABC的角平分线,DE∥AB,如果
AE
EC
=
2
3
,那么
DE
AB
=
 

查看答案和解析>>

同步练习册答案