C
分析:A根据二次函数二次项的系数的正负确定抛物线的开口方向.
B利用x=-

可以求出抛物线的对称轴.
C利用顶点坐标和抛物线的开口方向确定抛物线的最大值或最小值.
D当y=0时求出抛物线与x轴的交点坐标.
解答:∵抛物线过点(0,-3),
∴抛物线的解析式为:y=x
2-2x-3.
A、抛物线的二次项系数为1>0,抛物线的开口向上,正确.
B、根据抛物线的对称轴x=-

=-

=1,正确.
C、由A知抛物线的开口向上,二次函数有最小值,当x=1时,y的最小值为-4,而不是最大值.故本选项错误.
D、当y=0时,有x
2-2x-3=0,解得:x
1=-1,x
2=3,抛物线与x轴的交点坐标为(-1,0),(3,0).正确.
故选C.
点评:本题考查的是二次函数的性质,根据a的正负确定抛物线的开口方向,利用顶点坐标公式求出抛物线的对称轴和顶点坐标,确定抛物线的最大值或最小值,当y=0时求出抛物线与x轴的交点坐标.