精英家教网 > 初中数学 > 题目详情

如图,BD是⊙O的直径,OA⊥OB,M是劣弧AB上的一点,过点M作⊙O的切线MP交OA的延长线于点P,MD与OA交于点N.
(1)求证:PM=PN;
(2)若BC=3,PA=数学公式BO,过点B作BC∥MP交⊙O于点C,求BO的长.

(1)证明:连接OM交BC于点Q,
∵PM是⊙O的切线,
∴OM⊥MP,
即∠OMP=90°,
∴∠PMN=90°-∠OMD,
∵∠PNM=∠OND=90°-∠ODM,
∵OD=OM,
∴∠OMD=∠ODM,
∴∠PMN=∠PNM,
∴PM=PN;

(2)由(1)∠OMP=90°,
∵MP∥BC,
∴OM⊥BC,BC=3,
∴BQ=
∵∠BOM+∠MOP=90°,∠P+∠MOP=90°,
∴∠BOM=∠P,
∴sin∠BOQ=sin∠P,

∵OB=OM=OA,
∴OP=OA+BO=BO,

∴OB=
分析:(1)连接OM交BC于点Q,由PM是⊙O的切线,可得OM⊥MP,由同角的余角相等,易证得∠PMN=∠PNM,即可得PM=PN;
(2)由(1)∠OMP=90°,可得MP∥BC,即可求得BQ的长,又由三角函数的性质,易得sin∠BOQ=sin∠P,即可得,继而求得答案.
点评:此题考查了切线的性质、三角函数的性质以及直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是一个边长为2的等边三角形,D、E都在直线BC上,并且∠DAE=120°
(1)设BD=x,CE=y,求y与x直间的函数关系式;
(2)在上题中一共有几对相似三角形,分别指出来(不必证明)
(3)改变原题的条件为AB=AC=2,∠BAC=β,∠DAE=α,α、β之间要满足什么样的关系,能使(1)中y与x的关系式仍然成立?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B是观察点,船A在B的正前方,过B作AB的垂线,在垂线上截取任意长BD,C是BD的中点,观察者从点D沿垂直于BD的DE方向走,直到点E、船A和点C在一条直线上,那么△ABC≌△EDC,从而量出DE的距离即为船离岸的距离AB,这里判定△ABC≌△EDC的方法是(  )

查看答案和解析>>

科目:初中数学 来源:2012年重庆市开县西街中学中考数学一模试卷(解析版) 题型:选择题

如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2011年黄冈教育阳江培训中心中考数学模拟试卷(5)(解析版) 题型:解答题

如图,△ABC是一个边长为2的等边三角形,D、E都在直线BC上,并且∠DAE=120°
(1)设BD=x,CE=y,求y与x直间的函数关系式;
(2)在上题中一共有几对相似三角形,分别指出来(不必证明)
(3)改变原题的条件为AB=AC=2,∠BAC=β,∠DAE=α,α、β之间要满足什么样的关系,能使(1)中y与x的关系式仍然成立?说明理由.

查看答案和解析>>

同步练习册答案