精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠BAC=90°,AC=4,D为BC上的点,连接AD(如图).如果将△ACD沿直线AD翻折后,点C恰好落在边AB的中点处,那么点D到AB的距离是________.


分析:首先过点D作DF⊥AB于F,作DG⊥AC于G,取AB的中点E,连接DE,根据折叠的性质,即可得DF=DG,AB=8,又由S△ABC=AB•AC,S△ABC=S△ABD+S△ACD,即可求得答案.
解答:解:过点D作DF⊥AB于F,作DG⊥AC于G,取AB的中点E,连接DE,
根据题意得:∠BAD=∠CAD,
∴DF=DG,
∵将△ACD沿直线AD翻折后,点C恰好落在边AB的中点处,
∴AE=AC=BE=4,
∴AB=8,
∵在Rt△ABC中,∠BAC=90°,
∴S△ABC=AB•AC,S△ABC=S△ABD+S△ACD=AB•DF+AB•DG,
设DF=x,
×8×4=×8x+×4x,
解得:x=
∴点D到AB的距离是
故答案为:
点评:此题考查了折叠问题,角平分线的性质等知识.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案