精英家教网 > 初中数学 > 题目详情

在图中,已知最大的长方形面积是2.18 cm2,设最小的长方形面积是a cm2,则

[  ]

A.a=1.2

B.a=8.9

C.a=0.89

D.a=1

答案:C
解析:

条形统计图中,长方形的宽是相同的,高与数据的大小成正比,它们的面积比等于高之比,也等于数据之比.这里有a∶2.18=89∶218,解得a=0.89.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y.
(1)求y与x的函数关系式;
(2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似;
(3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB精英家教网上,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知等边三角形ABC的边长为2,AD是BC边上的高.
(1)在△ABC内部作一个矩形EFGH(如图①),其中E、H分别在边AB、AC上,FG在边BC上.
①设矩形的一边FG=x,那么EF=
 
;(用含有x的代数式表示)精英家教网
②设矩形的面积为y,当x取何值时,y的值最大,最大值是多少?
(2)当矩形EFGH面积最大时,请在图②中画出此时点E的位置.(要求尺规作图,保留作图痕迹,并简要说明确定点E的方法)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,已知点B的坐标为(2,0),点C的坐标为(0,8),sin∠CAB=
45
,E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE.
(1)求AC和OA的长;
(2)设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式;
(3)在(2)的条件下试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013届北京市门头沟区九年级上学期期末考试数学试卷(带解析) 题型:解答题

如图,在平面直角坐标系xOy中,已知点B的坐标为(2,0),点C的坐标为(0,8),sin∠CAB=, E是线段AB上的一个动点(与点A、点B不重合),过点EEFACBC于点F,连结CE.

(1)求ACOA的长;
(2)设AE的长为m,△CEF的面积为S,求Sm之间的函数关系式;
(3)在(2)的条件下试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年北京市门头沟区九年级上学期期末考试数学试卷(解析版) 题型:解答题

如图,在平面直角坐标系xOy中,已知点B的坐标为(2,0),点C的坐标为(0,8),sin∠CAB=, E是线段AB上的一个动点(与点A、点B不重合),过点EEFACBC于点F,连结CE.

(1)求ACOA的长;

(2)设AE的长为m,△CEF的面积为S,求Sm之间的函数关系式;

(3)在(2)的条件下试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案