精英家教网 > 初中数学 > 题目详情

PA,PB与⊙O分别相切于点A,B,点C为⊙O上异于A,B的一点,若∠P=70°,则∠ACB=________.

55或125°
分析:连接OA、OB,根据切线的性质得出∠OAP的度数,∠OBP的度数;再根据四边形的内角和是360°,求出∠AOB的度数,有圆周角定理或圆内接四边形的性质,求出∠ACB的度数即可.
解答:连接OA、OB.
∵PA,PB分别切⊙O于点A,B,
∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;
又∵∠APB=70°,
∴在四边形AOBP中,∠AOB=360°-90°-90°-70°=110°,
∴∠ADB=×∠AOB=×110°=55°,
即当C在D处时,∠ACB=55°.
在四边形ADBC中,∠ACB=180°-∠ADB=180°-55°=125°.
于是∠ACB的度数为55°或125°,
故答案为:55°或125°.
点评:此题考查了切线的性质,以及圆周角定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题,同时要求学生掌握同弧所对的圆周角等于所对圆心角的一半.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,PA、PB与⊙O分别相切于点A、点B,AC是⊙O的直径,PC交⊙O于点D,已知∠APB=60°,AC=2,那么CD的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

PA,PB与⊙O分别相切于点A,B,点C为⊙O上异于A,B的一点,若∠P=70°,则∠ACB=
55或125°
55或125°

查看答案和解析>>

科目:初中数学 来源:2010-2011学年江苏省无锡市江阴市九年级(上)期中数学试卷(解析版) 题型:填空题

如图,PA、PB与⊙O分别相切于点A、点B,AC是⊙O的直径,PC交⊙O于点D,已知∠APB=60°,AC=2,那么CD的长为   

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(08)(解析版) 题型:填空题

(2002•四川)如图,PA、PB与⊙O分别相切于点A、点B,AC是⊙O的直径,PC交⊙O于点D,已知∠APB=60°,AC=2,那么CD的长为   

查看答案和解析>>

科目:初中数学 来源:2002年四川省中考数学试卷(解析版) 题型:填空题

(2002•四川)如图,PA、PB与⊙O分别相切于点A、点B,AC是⊙O的直径,PC交⊙O于点D,已知∠APB=60°,AC=2,那么CD的长为   

查看答案和解析>>

同步练习册答案