精英家教网 > 初中数学 > 题目详情

如图,对于直线AB、线段CD、射线EF,其中能相交的是

[  ]

A.

B.

C.

D.

答案:B
解析:

能否相交,取决于各种“线”的特征.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)已知:如图,在△ABC中,∠BAC=90°,AB=AC,直线AF交BC于F,BD⊥AF于D,CE⊥AF于E.求证:DE=BD-EC.
(2)对于(1)中的条件改为:直线AF在△ABC外,与BC的延长线相交于F,其他条件不变,上述结论仍成立吗?(请画出图形)若不成立,请写出正确的关系式.(不用证明)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=
14
S△ABC;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,过点A、O的圆与y轴相交于一点C,与AB相交于一点E,直线AB的解析式为y=kx+4k,过点A、O的抛物线y=ax2+bx+c的顶点为P.
(1)若点C的坐标为(0,
4
3
3
),AC平分∠BAO,求点B的坐标;
(2)若AC=
2
OE,且点P在AB上,是否存在实数m,对于抛物线y=ax2+bx+c上任意一点M(x,y),都能使(x+2)2+(y-2+m)2=(y-2-m)2成立?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:单选题

如图,对于直线AB、线段CD、射线EF,其中能相交的是
[     ]
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案