精英家教网 > 初中数学 > 题目详情

以n(n>3)边形的一个顶点引对角线,把n边形分成三角形的个数是

[  ]

A.n-1

B.n-2

C.n-3

D.n-4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

数学家们通过长期的研究,得到了关于“等周问题”的重要结论:在周长相同的所有封闭平面曲线中,以圆所围成的面积最大.
“等周问题”虽然较为繁杂,但其根本思想基于下面2个事实:
事实1:等周长n边形的面积,当图形为正n边形时,其面积最大;
事实2:等周长n边形的面积,当边数n越大时,其面积也越大.
为了理解这些事实的合理性,曙光数学小组走出校门展开了下列课题研究.请你帮助他们解决其中的一些问题.
现有长度为100m的篱笆(可弯曲围成一个区域).
(1)如果用篱笆围成一个长方形鸡场,怎样围才能使鸡场的面积最大?为什么?
(2)如果用篱笆围成一个正五边形鸡场,那么与(1)中的正方形鸡场比较,哪个面积更大?请在事实1的基础上证明事实2:“等周长n边形的面积,当边数n越大时,其面积也越大.”
(3)利用事实1和事实2,请对“等周问题”的重要结论作出较为合理的解释.
(4)爱动脑筋的小明提出一个问题:如果借用一条充分长的直墙,将篱笆围成一个四边形鸡场,为了使鸡场的面积尽量大,所围成的长方形鸡场的长是宽的2倍(如图).你觉得他讲的是否有道理?你有没有更好的方法,使围成的四边形鸡场的面积更大?如果有,请说明你的方法.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,依次以三角形、四边形、…、n边形的各顶点为圆心画半径为l的圆,且圆与圆之间两两不相交.把三角形与各圆重叠部分面积之和记为S3,四边形与各圆重叠部分面积之和记为S4,….n边形与各圆重叠部分面积之和记为Sn.则S90的值为
 
.(结果保留π)
 精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,依次以三角形、四边形、…、n边形的各顶点为圆心画半径为l的圆,且圆与圆之间两两不相交.把三角形与各圆重叠部分面积之和记为S3,四边形与各圆重叠部分面积之和记为S4,….n边形与各圆重叠部分面积之和记为Sn.则S2012的值为
1005π
1005π
.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,依次以三角形,四边形…n边形的各顶点为圆心画半径为1的圆,且圆与圆之间两两不相交,把三角形与各圆重叠部分(阴影部分)面积之和记为S3,四边形与各圆重叠部分记为S4…n边形与各圆重叠部分记为Sn,则s4=________  S90=________ (结果保留π)
作业宝

查看答案和解析>>

同步练习册答案