精英家教网 > 初中数学 > 题目详情

对于函数,请回答下列问题:

(1)把抛物线怎样平移得到抛物线

(2)说出图象的对称轴和顶点坐标;

(3)试讨论函数的图象特征.

答案:略
解析:

(1)把抛物线向左平移2个单位得抛物线

(2)对称轴是直线x=2,顶点是(20)

(3)函数的图象开口向上,关于直线x=2对称,顶点是图象的最低点,当x=2时,


练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面材料,再回答问题:
一般地,如果函数y=f(x)对于自变量取值范围内的任意x,都有f(-x)=-f(x),那么y=f(x)就叫做奇函数;如果函数y=f(x)对于自变量取值范围内的任意x,都有f(-x)=f(x),那么y=f(x)就叫做偶函数.
例如:f(x)=x3+x
当x取任意实数时,f(-x)=(-x)3+(-x)=-x3-x=-(x3+x)
即f(-x)=-f(x)
所以f(x)=x3+x为奇函数
又如f(x)=|x|
当x取任意实数时,f(-x)=|-x|=|x|=f(x)
即f(-x)=f(x)
所以f(x)=|x|是偶函数
问题(1):下列函数中
①y=x4②y=x2+1③y=
1
x3

y=
x+1
y=x+
1
x

所有奇函数是
 
,所有偶函数是
 
(只填序号)
问题(2):请你再分别写出一个奇函数、一个偶函数.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料再回答问题:
对于函数y=x2,当x=1时,y=1,当x=-1时,y=1;当x=2时,y=4,当x=-2时,y=4;…
而点(1,1)与(-1,1),(2,4)与(-2,4),…,都关于y轴对称.显然,如果点(x0,y0)在函数y=x2的图象上,那么,它关于y轴对称的点(-x0,y0)也在函数y=x2的图象上,这时,我们说函数y=x2关于y轴对称.
一般地,如果对于一个函数,当自变量x在允许范围内取值时,若x=x0和x=-x0时,函数值都相等,我们说函数的图象关于y轴对称.
问题:
(1)对于函数y=x3,当自变量x取一对相反数时,函数值也得到一对相反数,则函数y=x3的图象关于
原点
原点
对称.(“x轴”、“y轴”或“原点”).
(2)下列函数:①y=x3+2x;②y=2x4+4x2;③y=x+
1
x
;④y=-x-2 中,其图象关于y轴对称的有
②④
②④
,关于原点对称的有
①③
①③
(只填序号).
(3)请你写出一个我们学过的函数关系式
y=
k
x
(k≠0)
y=
k
x
(k≠0)
,其图象关于直线y=x对称.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下面材料,再回答问题:
一般地,如果函数y=f(x)对于自变量取值范围内的任意x,都有f(-x)=-f(x),那么y=f(x)就叫做奇函数;如果函数y=f(x)对于自变量取值范围内的任意x,都有f(-x)=f(x),那么y=f(x)就叫做偶函数.
例如:f(x)=x3+x
当x取任意实数时,f(-x)=(-x)3+(-x)=-x3-x=-(x3+x)
即f(-x)=-f(x)
所以f(x)=x3+x为奇函数
又如f(x)=|x|
当x取任意实数时,f(-x)=|-x|=|x|=f(x)
即f(-x)=f(x)
所以f(x)=|x|是偶函数
问题(1):下列函数中
①y=x4②y=x2+1③数学公式
数学公式数学公式
所有奇函数是______,所有偶函数是______(只填序号)
问题(2):请你再分别写出一个奇函数、一个偶函数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下列材料再回答问题:
对于函数y=x2,当x=1时,y=1,当x=-1时,y=1;当x=2时,y=4,当x=-2时,y=4;…
而点(1,1)与(-1,1),(2,4)与(-2,4),…,都关于y轴对称.显然,如果点(x0,y0)在函数y=x2的图象上,那么,它关于y轴对称的点(-x0,y0)也在函数y=x2的图象上,这时,我们说函数y=x2关于y轴对称.
一般地,如果对于一个函数,当自变量x在允许范围内取值时,若x=x0和x=-x0时,函数值都相等,我们说函数的图象关于y轴对称.
问题:
(1)对于函数y=x3,当自变量x取一对相反数时,函数值也得到一对相反数,则函数y=x3的图象关于______对称.(“x轴”、“y轴”或“原点”).
(2)下列函数:①y=x3+2x;②y=2x4+4x2;③数学公式;④y=-x-2 中,其图象关于y轴对称的有______,关于原点对称的有______(只填序号).
(3)请你写出一个我们学过的函数关系式______,其图象关于直线y=x对称.

查看答案和解析>>

同步练习册答案