精英家教网 > 初中数学 > 题目详情

顺次连接矩形各边中点所得四边形为________形.


分析:作出图形,根据三角形的中位线定理可得EF=GH=AC,FG=EH=BD,再根据矩形的对角线相等可得AC=BD,从而得到四边形EFGH的四条边都相等,然后根据四条边都相等的四边形是菱形解答.
解答:解:如图,连接AC、BD,
∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,
∴EF=GH=AC,FG=EH=BD(三角形的中位线等于第三边的一半),
∵矩形ABCD的对角线AC=BD,
∴EF=GH=FG=EH,
∴四边形EFGH是菱形.
故答案为:菱形.
点评:本题考查了三角形的中位线定理,菱形的判定,矩形的性质,作辅助线构造出三角形,然后利用三角形的中位线定理是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、顺次连接矩形各边中点所得的四边形是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

4、顺次连接矩形各边中点,能够得到一个(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

6、下列说法正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

19、顺次连接矩形各边中点所得的四边形是
菱形
;顺次连接对角线互相垂直的四边形各边中点所得的四边形是
矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

给出下列命题:①顺次连接矩形各边中点所得的四边形是菱形;②对角线互相垂直且相等的四边形是正方形;③一组对边平行,一组对角相等的四边形是平行四边形;④一组对边平行,另一组对边相等的四边形是平行四边形.其中真命题的序号是
①③
①③
(请把所有真命题的序号都填上).

查看答案和解析>>

同步练习册答案