精英家教网 > 初中数学 > 题目详情

等腰三角形底边上任意一点到两腰的距离之和等于

[  ]

A.腰上的高
B.底边上的高
C.腰长
D.底边
答案:A
解析:

过C点作CM⊥AB,垂足为M,连结AD

×AB×CM

×AB×DF

×AC×DE

∴△ABC是等腰三角形

∴AB=AC

+

∴DF+DE=CM

∴选A


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网下面两题任选一题
(1)求证:三角形一边上的中线小于另外两边之和的一半.
(2)求证:等腰三角形底边上任意一点到两腰的距离之和是一个定值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解题:
已知:如图,△ABC中,AB=AC,P是底边BC上的任一点(不与B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求证:CD=PE+PF.
在解答这个问题时,小明与小颖的思路方法分别如下:
小明的思路方法是:过点P作PG⊥CD于G(如图1),则可证得四边形PEDG是矩形,也可证得△PCG≌△CPF,从而得到PE=DG,PF=CG,因此得CD=PE+PF.
小颖的思路方法是:连接PA(如图2),则S△ABC=S△PAB+S△PAC,再由三角形的面积公式便可证得CD=PE+PF.
由此得到结论:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.
阅读上面的材料,然后解答下面的问题:
(1)针对小明或小颖的思路方法,请选择俩人中的一种方法把证明过程补充完整
(2)如图3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一点,EM⊥BD于M,EN⊥AC于N,试利用上述结论
求EM+EN的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

12、从等腰三角形底边上任意一点分别作两腰的平行线,与两腰所围成的平行四边形的周长等于三角形的(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2008•攀枝花)阅读下面五个命题,把正确命题的序号全部填在横线处:
①五角星是中心对称图形;
②对角线互相垂直相等的四边形是正方形;
③菱形四边中点的连线组成的四边形是矩形;
④垂直于同一直线的两条直线互相平行;
⑤在一个确定的等腰三角形底边上任意的一点(端点除外)到两腰距离之和是一个定值.
正确命题的序号
③⑤
③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网【老题重现】
求证:等腰三角形底边上任意一点到两腰的距离和等于一腰上的高.
已知:△ABC中,AB=AC,点P是BC边上任意一点,PE⊥AB于E,PF⊥AC于F,CD是AB边上的高线.
求证:PE+PF=CD
证明:连接AP,
∵S△ABP+S△ACP=S△ABC
AB×PE
2
+
AC×PF
2
=
AB×CD
2

∵AB=AC
∴PE+PF=CD

【变式应用】
请利用“类比”和“化归”两种方法解答下面问题:
求证:等边三角形内上任意一点到三边的距离和等于一边上的高.
已知:点P是等边△ABC内任意一点,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,AH是BC边上的高线.精英家教网
求证:PD+PE+PF=AH
证明:
方法(一)类比:通过类比上题的思路和方法,模仿上题的“面积法”解决本题.
连接AP,BP,CP
方法(二)化归:如图,通过MN在等边△ABC中构造符合“老题”规律的等边△AMN,化“新题”为“老题”,直接利用“老题重现”的结论解决问题.
过点P作MN∥BC,交AB于M,交AC于N,交AH于G.

【提炼运用】
已知:点P是等边△ABC内任意一点,设到三边的距离分别为a、b、c,且使得以a、b、c为边能够构成三角形.
请在图中画出满足条件的点P一切可能的位置,并对这些位置加以说明.
精英家教网

查看答案和解析>>

同步练习册答案