证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴△ABE∽△FDE,
∴

;
(2)∵AD∥BC,
∴△ADE∽△GBE,
∴

,
∵

,
∴

,
∴AE
2=EF•EG;
(3)结论AE
2=EF•EG成立.
证明:在?ABCD中,AB∥CD,AD∥BC,
∴△ABE∽△FDE,△ADE∽△GBE,
∴

,

,
∴

,
∴AE
2=EF•EG.
分析:(1)由四边形ABCD是平行四边形,可得AB∥CD,即可得△ABE∽△FDE,然后由相似三角形的对应边成比例,证得

;
(2)由AD∥BC,可得△ADE∽△GBE,然后由相似三角形的对应边成比例,可得

,又由

,即可证得AE
2=EF•EG;
(3)由在?ABCD中,AB∥CD,AD∥BC,可得△ABE∽△FDE,△ADE∽△GBE,然后由相似三角形的对应边成比例可得:

,

,继而可证得AE
2=EF•EG.
点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想的应用.