精英家教网 > 初中数学 > 题目详情

经过平移,等边△ABC的顶点A沿BC边的方向平移了2倍边长移至点D,作出平移后的三角形.

答案:
解析:

  作法:如图,

  1.延长BC到F.使BF=3BC.

  2.在FB上截取FE=BC.

  3.连结DE,DF.

  则△DEF就是△ABC平移后的三角形.


提示:

应先根据已知条件作出原等边三角形,再根据平移变换中“对应点所连的线段平行且相等”做出平移后的三角形.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、已知:如图,在等边三角形ABC中,点D、E分别在边AB、BC的延长线上,且AD=BE,连接AE、CD.
(1)求证:△CBD≌△ACE;
(2)如果AB=3cm,那么△CBD经过怎样的图形运动后,能与△ACE重合?请写出你的具体方案.(可以选择的图形运动是指:平移、旋转、翻折)

查看答案和解析>>

科目:初中数学 来源: 题型:

图1是边长分别为4
3
和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于F(图2);
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3);
请问:经过多少时间,△PQR与△ABC重叠部分的面积恰好等于
7
3
4

(3)操作:图1中△C′D′E′固定,将△ABC移动,使顶点C落在C′E′的中点,边BC交D′E′于点M,边AC交D′C′于点N,设
∠AC C′=α(30°<α<90,图4);
探究:在图4中,线段C′N•E′M的值是否随α的变化而变化?如果没有变化,请你求出C′N•E′M的值,如果有变化,请你说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如下图,等边△ABC经过平移后成为△BDE,则其平移的方向是
水平向右
;平移的距离是
AB或BD
;△ABC经过旋转后成为△BDE,则其旋转中心是
B
;旋转角度是
120
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,在线段AB上取一点C(BC>AC),分别以AC、BC为边在同一侧作等边△ACD与等边△BCE,连接AE、BD,则△ACE经过怎样的变换(平移、轴对称、旋转)能得到△DCB?请写出具体的变换过程;(不必写理由)
精英家教网
(2)如图,在线段AB上取一点C(BC>AC),如果以AC、BC为边在同一侧作正方形ACDG与正方形CBEF,连接EG,取EG的中点M,设DM的延长线交EF于N,并且DG=NE;请探究DM与FM的关系,并加以证明;
精英家教网
(3)在第二题图的基础上,将正方形CBEF绕点C顺时针旋转(如图),使得A、C、E在同一条直线上,请你继续探究线段MD、MF的关系,并加以证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等边△ABC边长为a,D、E分别为AB、AC边上的动点,且在运动时保持DE∥BC,如图(1),⊙O1与⊙O2都不在△ABC的外部,且⊙O1、⊙O2分别与∠B和∠C的两边及DE都相切,其中和DE、BC的切点分别为M、N、M′、N′.
(1)求证:⊙O1和⊙O2是等圆;
(2)设⊙O1的半径长为x,圆心距O1O2为y,求y与x的函数关系式,并写出x的取值范围;
(3)当⊙O1与⊙O2外切时,求x的值;
(4)如图(2),当D、E分别是AB、AC边的中点时,将⊙O2先向左平移至和⊙O1重合,然后将重合后的圆沿着△ABC内各边按图(2)中箭头的方向进行滚动,且总是与△ABC的边相切,当点O1第一次回到它原来的位置时,求点O1经过的路线长度?
精英家教网

查看答案和解析>>

同步练习册答案