精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a-2b+c=0;②a-b+c<0;③2a+c>0;④2a-b+1>0.其中正确结论的个数是(  )个.
A、4个B、3个C、2个D、1个
分析:根据已知画出图象,把x=-2代入得:4a-2b+c=0,2a+c=2b-2a;把x=-1代入得到a-b+c>0;根据-
b
2a
<0,推出a<0,b<0,a+c>b,计算2a+c=2b-2a>0;代入得到2a-b+1=-
1
2
c+1>0,根据结论判断即可.
解答:精英家教网解:根据二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,画出图象为:如图
把x=-2代入得:4a-2b+c=0,∴①正确;
把x=-1代入得:y=a-b+c>0,如图A点,∴②错误;
∵(-2,0)、(x1,0),且1<x1<2,
∴取符合条件1<x1<2的任何一个x1,-2•x1<-2,
∴由一元二次方程根与系数的关系知 x1•x2=
c
a
<-2,
∴不等式的两边都乘以a(a<0)得:c>-2a,
∴2a+c>0,∴③正确;
④由4a-2b+c=0得 2a-b=-
c
2

而0<c<2,∴-1<-
c
2
<0
∴-1<2a-b<0
∴2a-b+1>0,
∴④正确.
所以①③④三项正确.
故选B.
点评:本题主要考查对二次函数图象上点的坐标特征,抛物线与X轴的交点,二次函数与系数的关系等知识点的理解和掌握,能根据图象确定与系数有关的式子得符号是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案