精英家教网 > 初中数学 > 题目详情

已知M,N为正整数,并且A=(1-数学公式)(1+数学公式)(1-数学公式)(1+数学公式)…(1-数学公式)(1+数学公式),B=(1-数学公式)(1+数学公式)(1-数学公式)(1+数学公式)…(1-数学公式)(1+数学公式).
证明:(1)A=数学公式,B=数学公式
(2)A-B=数学公式,求m和n的值.

解:(1)原式=××××…××=-=
同理得B=
(2)∵A-B=
-=
=
∵m,n均为正整数,
∴n>m,
∵n-m与mn互质,13又是质数,
∴m,n中至少有一个是13的倍数,设n=13k(k∈N+
=
13k-m=km,
m===13-
∵k与k+1互质,m∈N+
∴有k+1整除13,得到:k=12,
∴n=13×12=156,m=12,
当m=13k时,n=<0(k∈N+),矛盾.
∴n=156,m=12.
分析:(1)每个括号的结果都是一个分数,这几个分数相乘后,只剩下第一个和最后一个分数没有化简,相乘即可,依此方法可得B的值;
(2)根据(1)得到的规律,得到关于m,n的式子,易得m,n中有一个是13的倍数,根据互质的原则判断出相应的整数解即可.
点评:考查数字的变化规律及应用规律进行计算;判断出各个数相乘的结果最后只剩第一个分数与最后一个分数相乘,是解决本题的突破点;判断出m,n中有一个数是13的倍数是解决本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知a,b为正整数,且满足
a+b
a2+ab+b2
=
4
49
,求a+b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a,b为正整数,且a为素数(也称为质数),a2+b2是一个完全平方数,试用含a的代数式表示b=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a,b为正整数,关于x的方程x2-2ax+b=0的两个实数根为x1,x2,关于y的方程y2+2ay+b=0的两个实数根为y1,y2,且满足x1y1-x2y2=2008.求b的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x、y为正整数,且满足xy-( x+y )=2p+q,其中p、q分别是x与y的最大公约数和最小公倍数,求所有这样的数对(x,y )  (x≥y ).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a,b为正整数,且满足(
1
a
1
a
-
1
b
-
1
b
1
a
+
1
b
)•(
1
a
-
1
b
)÷(
1
a2
+
1
b2
)=2
,则a+b=
9
9

查看答案和解析>>

同步练习册答案