精英家教网 > 初中数学 > 题目详情

如图,A、B两点在反比例函数数学公式(x>0)的图象上.
(1)求该反比例函数的解析式;
(2)连接AO、BO和AB,请直接写出△AOB的面积.

解:(1)∵点A(1,6)在反比例函数的(x>0)图象上,
∴k=1×6=6,
∴反比例函数解析式为y=(x>0);

(2)∵A、B两点在反比例函数y=的图象上,
过A、B画直线交x轴于D点,交y轴于C点,
设直线AB的解析式为y=kx+b,
∵图象经过A(1,6),B(6,1),

解得
∴直线AB的解析式为y=-x+7,
∴C(0,7),D(7,0),
∴S△AOC=×7×1=3.5
S△BOD=×7×1=3.5,
S△COD=×7×7=24.5,
∴△AOB的面积是:24.5-3.5×2=17.5.
分析:(1)利用待定系数法直接把A(1,6)反比例函数的(x>0)即可算出k的值,进而得到反比例函数解析式;
(2)首先求出直线AB的解析式,再算出C、D两点坐标,进而可得到△AOC,△BOD,△COD的面积,再利用△COD的面积-△AOC的面积-△BOD的面积即可得到答案.
点评:此题主要考查了待定系数法求反比例函数解析式,以及一次函数解析式,解决问题的关键是求出△AOC,△BOD,△COD的面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•绵阳)如图1,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+
1
6
x+c的图象F交x轴于B、C两点,交y轴于M点,其中B(-3,0),M(0,-1).已知AM=BC.
(1)求二次函数的解析式;
(2)证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;
(3)在(2)的条件下,设直线l过D且分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N.
①若直线l⊥BD,如图1,试求
1
BP
+
1
BQ
的值;
②若l为满足条件的任意直线.如图2.①中的结论还成立吗?若成立,证明你的猜想;若不成立,请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•浙江一模)如图1,在平面上,给定了半径为r的⊙O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这种把点P变为点P′的变换叫做反演变换,点P与点P′叫做互为反演点,⊙O称为基圆.
(1)如图2,⊙O内有不同的两点A、B,它们的反演点分别是A′、B′,则与∠A′一定相等的角是
(C)
(C)

(A)∠O         (B)∠OAB        (C)∠OBA           (D)∠B′
(2)如图3,⊙O内有一点M,请用尺规作图画出点M的反演点M′;(保留画图痕迹,不必写画法).
(3)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆O的半径为r,另一个半径为r1的⊙C,作射线OC交⊙C于点A、B,点A、B关于⊙O的反演点分别是A′、B′,点M为⊙C上另一点,关于⊙O的反演点为M′.求证:∠A′M′B′=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=-2x+8与两坐标轴分别交于P,Q两点,在线段PQ上有一点A,过点A分别作两坐标轴的垂线,垂足分别为B、C.
(1)若四边形ABOC的面积为6,求点A的坐标.
(2)有人说,当四边形ABOC为正方形时,其面积最大,你认为正确吗?若正确,请给予证明;若错误,请举反例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图14所示,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+[x/6]+c的图象F交x轴于B、C两点,交y轴于M点,其中B(-3,0),M(0,-1)。已知AM=BC。

[1]求二次函数的解析式;

[2]证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;

[3]在[2]的条件下,设直线l过D且分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N。

①若直线l⊥BD,如图14所示,试求[1/BP]+[1/BQ]的值;

②若l为满足条件的任意直线。如图15所示,①中的结论还成立吗?若成立,证明你的猜想;若不成立,请举出反例。

 


查看答案和解析>>

科目:初中数学 来源:2010年福建省厦门一中中美班招生数学试卷(解析版) 题型:解答题

如图,直线y=-2x+8与两坐标轴分别交于P,Q两点,在线段PQ上有一点A,过点A分别作两坐标轴的垂线,垂足分别为B、C.
(1)若四边形ABOC的面积为6,求点A的坐标.
(2)有人说,当四边形ABOC为正方形时,其面积最大,你认为正确吗?若正确,请给予证明;若错误,请举反例说明.

查看答案和解析>>

同步练习册答案