如图,要测量被池塘隔开的A,B两点的距离,小明在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,并分别找出它们的中点D,E,连接DE,现测得DE=45米,那么AB等于( )
![]()
A. 90米 B. 88米 C. 86米 D. 84米
科目:初中数学 来源:2018年贵州省安顺市中考数学对点突破模拟试卷(1)(解析) 题型:解答题
跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.
(1)求每个甲种零件、每个乙种零件的进价分别为多少元?
(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.
查看答案和解析>>
科目:初中数学 来源:甘肃省定西市陇西县2018届九年级下学期期中考试数学试卷 题型:单选题
如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )
![]()
A. 0.7米 B. 1.5米 C. 2.2米 D. 2.4米
查看答案和解析>>
科目:初中数学 来源:河南省2018届九年级(上)第三次大联考数学试卷 题型:填空题
如图,在矩形ABCD中,AB=12,BC=9,点E,G分别为边AB,AD上的点,若矩形AEFG与矩形ABCD相似,且相似比为
,连接CF,则CF= .
![]()
查看答案和解析>>
科目:初中数学 来源:河南省2018届九年级(上)第三次大联考数学试卷 题型:单选题
如图1所示的是带支架功能的某品牌手机壳,将其侧面抽象为如图2所示的几何图形,已知AB=5cm,∠BAC=60°,∠C=45°,则AC的长(
≈1.732,结果精确到0.1cm)为( )
![]()
A. 3.4cm B. 4.6cm C. 5.8cm D. 6.8cm
查看答案和解析>>
科目:初中数学 来源:2018年河南省开封市中考模拟考试(4月)---数学 试卷 题型:解答题
如图,△ABC内接于⊙O,且AB为⊙O的直径OD⊥AB,与AC交于点E,与过点C的⊙O切线交于点D.
(1)若AC=6,BC=3,求OE的长.
(2)试判断∠A与∠CDE的数量关系,并说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源:2018年河南省开封市中考模拟考试(4月)---数学 试卷 题型:单选题
如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A处,若AO=OB=2,则阴影部分面积为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源:2018年内蒙古鄂尔多斯市中考数学对点突破模拟试卷(三) 题型:解答题
【问题情景】利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.
例如:张老师给小聪提出这样一个问题:
如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?
小聪的计算思路是:
根据题意得:S△ABC=
BC•AD=
AB•CE.
从而得2AD=CE,∴
请运用上述材料中所积累的经验和方法解决下列问题:
(1)【类比探究】
如图2,在?ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,
求证:BO平分角AOC.
(2)【探究延伸】
如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PA•PB=2AB.
(3)【迁移应用】
如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=
,BC=2,AC=
,又已知M、N分别为AE、BE的中点,连接DM、CN.求△DEM与△CEN的周长之和.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com